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Abstract

This paper examines the importance of higher-order moments in the estimation
of Value at Risk (VaR) and Conditional Value At Risk (CVaR) for the European
markets. We use 5 limited cases of the Skewed Generalized T-distribution SGT
distributions: the SGED, the GED, the Skewed Student-t (ST), the symmetric
Student-t (T) and Normal distribution. We examine the performance of 8 commonly
used GARCH models and observe that the skewed distributions SGED and ST are
the best performing models in terms of the Akaike Information Criterion (AIC),
which is consistent with previous research on US indices. Using a rolling window
approach for the out-of-sample (OOS) analysis we find that again this pattern
appeared with the ST the best and the SGED a close second best distribution. Next
to this, we also explore the Autoregressive Conditional Density (ACD) model, which
allows the higher-order moments to be time-varying. The model in-sample provides a
better fit according to the AIC, however the complexity of the estimation procedure
is in our opinion not the best if we follow the results of our OOS. According to our
OOS, we find that the ACD model with a Skewed T-distribution (ST) does not
necessarily forecast the VaR and CVaR better than its non time-varying GARCH
equivalent. Overall we do found that inclusion of higher-order moments matters
in the estimation of VaR and CVaR.@
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Introduction

A general assumption in finance is that stock returns are normally distributed.

However, various authors have shown that this assumption does not hold in

practice: stock returns are not normally distributed (among which Theodossiou 2000;

Subbotin 1923; Theodossiou 2015). For example, Theodossiou (2000) mentions that

“empirical distributions of log-returns of several financial assets exhibit strong higher-

order moment dependencies which exist mainly in daily and weekly log-returns and

prevent monthly, bimonthly and quarterly log-returns from obeying the normality

law implied by the central limit theorem. As a consequence, price changes do not

follow the geometric Brownian motion.” So in reality, stock returns exhibit fat-tails

and peakedness (Officer 1972), these are some of the so-called stylized facts of

returns. Additionally, a point of interest is the predictability of stock prices (Fama

1965; Fama 1970; Welch and Goyal 2008). This makes it difficult for corporations

to manage market risk, i.e. the variability of stock prices.

Risk, in general, can be defined as the volatility of unexpected outcomes (Jorion

2007). Corporations have to manage their risks both for their own sake and due

to regulatory requirements. Consequentially, the Value at Risk metric (VaR),

developed in response to the financial disaster events of the early 1990s, has been

very influential in the financial world. The tool of VaR has become a standard

measure of risk for many financial institutions going from banks, that use VaR

to calculate the adequacy of their capital structure, to other financial services

companies to assess the exposure of their positions and portfolios. The 1% VaR can

be defined as the maximum loss of a portfolio, during a time horizon, excluding all

the negative events with a combined probability lower than 1% while the Conditional

2



Introduction

Value at Risk (CVaR) can be defined as the average of the events that are lower

than the VaR. Also Bali, Mo, et al. (2008) explains that many implementations

of the CVaR have the assumption that asset and portfolio’s returns are normally

distributed but that this is inconsistent with the evidence. Assuming normality can

lead to incorrect VaR and CVaR numbers, an underestimation of the probability of

extreme events happening and ultimately a poor understanding of risk exposure.

This paper has two goals. The first goal is to develop a deeper understanding of

GARCH models, their mechanics and the properties of these models in regard to

risk management. Second, we aim to replicate and update the research made by

Bali, Mo, et al. (2008) on U.S. indexes, analyzing the dynamics proposed with a

European outlook. Namely, we use GARCH models to predict the volatility of the

Euro Stoxx 50 return index. After this estimation, we compute VaR and CVaR

and conduct a backtest to see if the GARCH models predict the VaR and CVaR

appropriately. This is summarized in our research question:

Do higher moments increase accuracy in the estima-
tion of VaR and CVaR?

The paper is organized as follows. First, chapter 1 discusses the stylized facts,

conditional distributions and the GARCH models. Chapter 2 describes the data

used and the methodology followed in modeling the volatility with GARCH models.

Then a description is given of the control tests used to evaluate the performances

of the different GARCH models and underlying distributions. In chapter 3, the

findings are presented and discussed. In chapter 4 the results of some diagnostic

tests are shown and interpreted. Finally, chapter 5 summarizes the results and

answers the research question.

3



1
Literature review

1.1 Stylized facts of returns

When analyzing returns as a time-series, we look at log returns. The log returns

are similar to simple returns, so the stylized facts of returns apply to both. One

assumption that is made often in financial applications is that returns are i.i.d.,

or independently and identically distributed. Another assumption is that they are

normally distributed. These assumptions might not be reasonable in reality. Below

the stylized facts1 following Annaert (2021) for returns are given.

• Returns are small and volatile (with the standard deviation being larger than

the mean on average).

• Returns have very little serial correlation, as mentioned by for example

Bollerslev (1987).

• Returns exhibit conditional heteroskedasticity, or volatility clustering. This

effect goes back to Mandelbrot (1963). There is no constant variance (ho-

moskedasticity). Instead it is time-varying. Bollerslev (1987) describes this

phenomenon as “rates of return data are characterized by volatile and tranquil

periods”. Alexander (2008) argues this to have implications for risk models:
1Stylized facts are the statistical properties that appear to be present in many empirical asset

returns (across time and markets)

4



1. Literature review

following a large shock to the market, the volatility changes and the probability

of another large shock is increased significantly.

• Returns exhibit asymmetric volatility, in the sense that volatility increases

more after a negative return shock than after a large positive return shock.

This is also called the leverage effect. Alexander (2008) mentions that this

leverage effect is most pronounced in equity markets: usually there is a strong

negative correlation between equity returns and the change in volatility.

• Returns are not normally distributed, as found by early work of Fama (1965).

Returns have tails fatter than a normal distribution (they are leptokurtotic)

and thus carry more risk. Log returns however can be assumed to be normally

distributed. We will examine this in our empirical analysis. This makes that

simple returns follow a log-normal distribution, a skewed density distribution.

A good summary is given by Alexander (2008) : “In general, we need to

know more about the distribution of returns than its expected return and its

volatility. Volatility tells us the scale and the mean tells us the location, but the

dispersion also depends on the shape of the distribution. The best dispersion

metric would be based on the entire distribution function of returns.”

Firms holding a portfolio of various stocks or other investments have a lot of things

to consider: expected return of a portfolio, the probability to get a return lower

than some threshold, the probability that an asset in the portfolio drops in value

when the market crashes. All the previous requires information about the return

distribution or so called density function of returns. What we know from the

stylized facts of returns that the normal distribution is not appropriate for returns.

In appendix part A we summarize some alternative distributions (SGT, SGED,

GED, Skewed Student-t, and Student-t) that might better approximate the actual

distribution of returns than the normal one.

5
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1.2 Volatility modeling

1.2.1 Rolling volatility

When volatility needs to be estimated on a specific trading day, the method

used as a descriptive tool would be to use rolling standard deviations. Engle

(2001) explains the calculation of rolling standard deviations, as the standard

deviation over a fixed number of the most recent observations2. Engle regards

this formulation as the first ARCH model.

1.2.2 From ARCH to GARCH models

Autoregressive Conditional Heteroscedasticity (ARCH) models, proposed by Engle

(1982), were in the first case not used in financial markets but on inflation. Since

then, it has been used as one of the workhorses of volatility modeling.

There are three building blocks of the ARCH model: returns, the innovation process

and the variance process (or volatility function), written out for an ARCH(1) in

respectively equation (1.1), (1.2) and (1.3). Returns are written as a constant part

(α0) and an unexpected part, called noise or the innovation process (α1 × εt). The

innovation process is the volatility (σt) times zt, which is an independent identically

distributed random variable with a mean of 0 (zero-mean) and a variance of 1

(unit-variance). The independent (iid), notes the fact that the z-values are not

correlated, but completely independent of each other. The distribution is one of

the distributions listed in appendix part A. The third component is the variance

process or the expression for the volatility. The variance is given by a constant β0,

plus the random part which depends on the return shock of the previous period

squared (ε2
t−1). In that sense when the uncertainty or surprise in the last period

increases, then the variance becomes larger in the next period. The element σ2
t

2For example, for the past month it would then be calculated as the equally weighted average
of the squared deviations from the mean from the last 22 observations (the average amount of
trading or business days in a month). All these deviations are thus given an equal weight. Also,
only a fixed number of past recent observations is examined.

6
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is thus known at time t − 1, while it is a deterministic function of a random

variable observed at time t − 1 (i.e. ε2
t−1).

yt = α0 + α1 × εt (1.1)

εt = σt × zt, where zt
iid∼ (0, 1) (1.2)

σ2
t = β0 + β1 × ε2

t−1 (1.3)

The full description of the ARCH model is given in appendix part A.

An improvement of the ARCH model is the Generalized Autoregressive Conditional

Heteroscedasticity (GARCH)3. This model and its variants come in to play because

of the fact that calculating standard deviations through rolling periods, gives an

equal weight to distant and nearby periods, by such not taking into account empirical

evidence of volatility clustering, which can be identified as positive autocorrelation

in the absolute returns. GARCH models are an extension to ARCH models, as

they incorporate both a novel moving average term (not included in ARCH) and

the autoregressive component. Furthermore, a second extension is changing the

assumption of the underlying distribution. As already explained, the normal

distribution is an unrealistic assumption, so other distributions which are described

in part A will be used. As Alexander (2008) explains, this does not change the

formulae of computing the volatility forecasts but it changes the functional form

of the likelihood function4. An overview (of a selection) of investigated GARCH

models is given in the following table.

3Stationarity implies that the series on which the ARCH model is used does not have any trend
and has a constant expected mean. Only the conditional variance is changing.

4which makes the maximum likelihood estimation explained in part 2.2.1 complex with more
parameters that have to be estimated.

7
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Table 1.1: GARCH models, the founders

Author(s) Model
Engle (1982) ARCH model
Bollerslev (1986) GARCH model
Bollerslev (1986) IGARCH model
Nelson (1991) EGARCH model
Glosten et al. (1993) GJRGARCH model
Engle and Ng (1993) NAGARCH model
Zakoian (1994) TGARCH model
Taylor (1986) and Schwert (1989) AVGARCH model
Morgan Guaranty Trust Company (1996) EWMA or RiskMetrics model

1.3 ACD models

An extension to GARCH models was proposed by Hansen (1994), namely the

autoregressive conditional density estimation model (referred to as ACD model,

sometimes ARCD). It focuses on time variation in higher moments (skewness

and kurtosis), because the degree and frequency of extreme events seem to be

not expected by traditional models. Some GARCH models are already able to

capture the dynamics by relying on a different unconditional distribution than the

normal distribution (for example skewed distributions like the SGED or SGT), or a

model that allows to incorporate these higher moments. However, Ghalanos (2016)

mentions that these models also assume the shape and skewness parameters to be

constant (not time-varying). As Ghalanos mentions: “the research on time-varying

higher moments has mostly explored different parametrizations in terms of dynamics

and distributions with little attention to the performance of the models out-of-

sample and ability to outperform a GARCH model with respect to VaR.” Also one

could question the marginal benefits of the ACD, while the estimation procedure is

rather sophisticated (nonlinear bounding specification of higher moment distribution

parameters and interaction). So, are skew (skewness parameter) and kurtosis (shape

parameter or parameters) time-varying? The literature investigating higher moments

has arguments for and against this statement. In part 2.2.2 the specification is given.

8
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1.4 Value at Risk

Value at Risk (VaR) is a risk metric developed simultaneously by Markowitz (1952)

and Roy (1952) to calculate how much money an investment, portfolio, department

or institution such as a bank could lose in a market downturn, though in this period

it remained mostly a theoretical discussion due to lacking processing power and

industry demand for risk management measures. Another important document in

literature is the 1996 RiskMetrics Technical Document, composed by RiskMetrics5

(Morgan Guaranty Trust Company (1996), part of JP Morgan), which gives a good

overview of the computation, but also made use of the name “value-at-risk” over

equivalents like “dollars-at-risk” (DaR), “capital-at-risk” (CaR), “income-at-risk”

(IaR) and “earnings-at-risk” (EaR). According to Holton (2002) VaR gained traction

in the last decade of the 20th century when financial institutions started using it to

determine their regulatory capital requirements. A V aR99 finds the amount that

would be the greatest possible loss in 99% of cases. It can be defined as the threshold

value Ft. Put differently, in 1% of cases the loss would be greater than this amount.

It is specified as in (1.4). Christoffersen et al. (2001) puts forth a general framework

for specifying VaR models and comparing between two alternatives models.

Pr(yt ≤ Ft|Ωt−1) ≡ α (1.4)

With yt expected returns in period t, Ωt−1 the information set available in the

previous period and α the chosen quantile.

5RiskMetrics Group was the market leader in market and credit risk data and modeling for
banks, corporate asset managers and financial intermediaries (Alexander 2008).

9
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1.5 Conditional Value at Risk

One major shortcoming of the VaR is that it does not provide information on

the probability distribution of losses beyond the threshold amount. As VaR lacks

subadditivity of different percentile outcomes, Artzner et al. (1996) rejects it as a

coherent measure of risk. This is problematic, as losses beyond this amount would

be more problematic if there is a large probability distribution of extreme losses,

than if losses follow say a normal distribution. To solve this issue, they provide a

conceptual idea of a Conditional VaR (CVaR) which quantifies the average loss one

would expect if the threshold is breached, thereby taking the distribution of the

tail into account. Mathematically, a CV aR99 is the average of all the V aR with a

confidence level equal to or higher than 99. It is commonly referred to as expected

shortfall (ES) sometimes and was written out in the form it is used by today by

(Bertsimas et al. 2004). It is specified as in (1.5).

To calculate Ft, VaR and CVaR require information on the expected distribution

mean, variance and other parameters, to be calculated using the previously discussed

GARCH models and distributions.

Pr(yt ≤ Ft|Ωt−1) ≡
∫ α

−∞
f(yt|Ωt−1) dyt = α (1.5)

With the same notations as before, and f the (conditional) probability density

function of yt.

According to the BIS framework, banks need to calculate both V aR99 and V aR97.5

daily to determine capital requirements for equity, using a minimum of one year

of daily observations (Basel Committee on Banking Supervision 2016). Whenever

a daily loss is recorded, this has to be registered as an exception or exceedance.

Banks can use an internal model to calculate their VaRs, but if they have more

than 12 exceptions for their V aR99 or 30 exceptions for their V aR97.5 they have to

follow a standardized approach. Similarly, banks must calculate CV aR97.5.

10
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1.6 Past literature on the consequences of higher
moments for VaR determination

A small description of the higher moments and VaR determination is given below.

A small overview table is given:

Table 1.2: Higher moments and VaR

Author Higher moments
Hansen (1994) Skewness and kurtosis extended ARCH-model
Harvey and Siddique (1999) Skewness, Effect of higher moments on lower moments
Brooks et al. (2005) Kurtosis, Time varying degrees of freedom

While it is relatively straightforward to include unconditional higher-moments in

VaR and CVaR calculations, it is less simple to do so when the higher moments

(in addition to the variance) are time-varying. Hansen (1994) extended the ARCH

model to include time-varying moments beyond mean and variance. While mean

and variance of returns are usually the parameters of most interest, disregarding

these higher moments could provide an incomplete description of a conditional

distribution. The model proposed by Hansen (1994) allows for skewness and shape

parameters to vary in a skewed-t density function through specifying them as

functions of their errors in previous periods (in a similar way how variance is

estimated). Applications on U.S. Treasuries and exchange rates are discussed by

Hansen.

Harvey and Siddique (1999) extended a GARCH(1,1) model to include time-varying

skewness by estimating it jointly with time-varying variance using a skewed Student-

t distribution. They found a significant impact of skewness on conditional volatility,

suggesting that these moments should be jointly estimated for efficiency. Changes

in conditional skewness have an impact on the persistence of volatility shocks.

They also found that including skewness causes the leverage effects of variance to

disappear. They applied their methods on different stock indices (both developed

11
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and emerging) at daily, weekly and monthly frequency.

Brooks et al. (2005) proposed a model based on a Student-t distribution that allows

for both the variance and the degrees of freedom to be time-varying, independently

from each other. Their model allows for both asymmetric variance and kurtosis

through an indicator function (which has a positive effect on these moments only

when the shock is in the right tail). They applied their model on different financial

assets in the U.S. and U.K. at daily frequency.

12



2
Data and methodology

2.1 Data

We worked with daily returns on the Euro Stoxx 50 Return Index1 retrieved

from Datastream denoted in EUR from 02 January, 2001 to 19 May, 2021. The

choice of daily data is motivated as follows. The primary interest in this paper is

(C)VaR models for banks’ (or financial institutions’) internal trading desks. Their

positions are usually short-term, making risk management at the daily level the

most appropriate. As such, in reference to the literature review, regulators require

VaR forecast for one day in advance. All following analysis could be applied on

monthly returns as well. The Euro Stoxx 50, the leading blue-chip index of the

Eurozone, was founded in 1999 and covers 50 of the most liquid and largest (in terms

of free-float market capitalization) stocks. For its composition and computation

we refer to the factsheet (Calculation guide STOXX ® 2020). Given that in

the 20th century computing return series was time consuming, the Eurostoxx 50

Return index is shorter than the Euro Stoxx 50 Price index (going back to 2001).

As a robustness check, we ran all subsequent analysis for the longer price index
1The same analysis has been performed for the FTSE 100, CAC 40, BEL 20 and the DAX

30 return indices and yielded broadly similar conclusions. The findings of these researches are
available upon requests.
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2. Data and methodology

as well. This did not yield a qualitative difference in terms of most efficient model(s).

Table 2.1 provides the main statistics describing the return series analyzed. Let

daily returns be computed as Rt = 100 (lnPt − lnPt−1),where Pt is the index price

at time t and Pt−1 is the index price at t− 1.

The arithmetic mean of the series is 0.01% with a standard deviation of 1.44%

and a median of 0.02 which translate to an annualized mean of 2.57% and an

annualized standard deviation of 22.85%. The skewness statistic is highly significant

and negative at -0.22 and the excess kurtosis is also highly significant and positive

at 6.54. These 2 statistics give an overview of the distribution of the returns which

has fatter tails than the normal distribution with a higher presence of left tail

observations. A formal test such as the Jarque-Bera one with its statistic at 739.89

and a high statistical significance, confirms the non-normality.

The right column of table 2.1 exhibits the same descriptive statistics but for the

standardizes residuals obtained from a simple GARCH model as mentioned in table

2.1 in Note 2. Again, Skewness statistic at -0.328 with a high statistical significance

level and the excess Kurtosis at 1.706 also with a high statistical significance,

suggest a non normal distribution of the standardized residuals and the Jarque-

Bera statistic at 9511.18, given its high significance, confirms the rejection of the

normality assumption.
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2. Data and methodology

Table 2.1: Summary statistics of the returns

Statistics Euro Stoxx 50 Standardized Residuals
Arithmetic Mean 0.0102 -0.0512
Median 0.0152 -0.0314
Maximum 10.4372 5.8561
Minimum -13.2164 -6.4432
Stdev 1.4391 0.9986
Skewness -0.2191 -0.3285

(0***) (0***)
Excess Kurtosis 6.5382 1.7055

(0***) (0***)
Jarque-Bera 9511.1796*** 739.8884***

Notes
1 This table shows the descriptive statistics of the daily
percentage returns of Euro Stoxx 50 over the period 2001-01-
03 to 2021-05-19 (5316 observations). Including arithmetic
mean, median, maximum, minimum, standard deviation.
The skewness, excess kurtosis with p-value and signicance
and the Jarque-Bera test with significance.

2 The standardized residual is derived from a maximum
likelihood estimation (simple GARCH model) as follows:
Rt = α0 + α1Rt−1 + εt
σ2
t = β0 + β1ε

2
t−1 + β2σ

2
t−1,

Where εt is given by ztσt
3 *, **, *** represent significance levels at the 5, 1 and <1
procent.
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2. Data and methodology

As can be seen in figure 2.1 the Euro area equity and later, since 1999 the Euro

Stoxx 50, went up during the tech (“dot com”) bubble reaching an ATH of €1734.84.

Then, there was a correction to boom again until the burst of the 2008 financial

crisis. After which it decreased significantly. With an ATL at 12 March, 2003 of

€405.23. There is an improvement, but then the European debt crisis, with its peak

in 2010-2012, occurred. From then there was some improvement until the “health

crisis”, which arrived in Europe, February 2020. This crisis recovered very quickly

reaching already values higher then the pre-COVID crisis level.
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Figure 2.1: Euro Stoxx 50 prices
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2. Data and methodology

In figure 2.2 the daily log-returns are visualized. A stylized fact that is observable

is the volatility clustering. As can be seen: periods of large volatility are mostly

followed by large volatility and small volatility by small volatility.

Figure 2.2: Euro Stoxx 50 log returns

In figure 2.3 the density distribution of the log returns are examined. As can be

seen, as already mentioned in part 1.1, log returns are not really normally distributed.

In figure 2.4 the prediction errors (in absolute values and squared) are visualized in

autocorrelation function plots. It is common practice to check this as in GARCH

models the variance is for a large extent driven by the square of the prediction

errors. The first component2 α0 is set equal to the sample average. As can be seen

there is presence of large positive autocorrelation. This reflects, again, the presence

of volatility clusters.

2α0 is most of the time referred to as the µ in the conditional mean equation. Here we have
followed Bali, Mo, et al. (2008).
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2. Data and methodology
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2. Data and methodology

2.2 Methodology

2.2.1 Garch models

As already mentioned in part 1.2.2, the following models: SGARCH, EGARCH,

IGARCH, GJRGARCH, NGARCH, TGARCH and NAGARCH (or TSGARCH)

will be estimated. Additionally the distributions will be examined as well, including

the normal, Student-t distribution, skewed Student-t distribution, generalized error

distribution, skewed generalized error distribution and the skewed generalized t

distribution. Distributions other than the normal are scaled to zero mean and unit

variance. They will be estimated using maximum likelihood3.

Maximum likelihood estimation is a method to find the distribution parameters

that best fit the observed data, through maximization of the likelihood function, or

the computationally more efficient log-likelihood function (by taking the natural

logarithm). It is assumed that the return data is i.i.d. and that there is some

underlying parametrized density function f with one or more parameters that

generate the data, defined as a vector θ in equation (2.2). These functions are

based on the joint probability distribution of the observed data as in equation

(2.3). Subsequently, the (log)likelihood function is maximized using an optimization

algorithm shown inequation (2.4).

y1, y2, ..., yN ∼ i.i.d (2.1)

yi ∼ f(y|θ) (2.2)

L(θ) =
N∏
i=1

f(yi|θ) (2.3)

3As already mentioned, fortunately, Ghalanos (2020b) has made it easy for us to implement
this methodology in the R language[ˆdata-meth-4] (R Core Team 2019) with the package “rugarch”
v.1.4-4 (R univariate garch), which gives us a bit more time to focus on the results and the
interpretation.
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2. Data and methodology

log(L(θ)) =
N∑
i=1

log f(yi|θ)

θ∗ = argmax
θ

[L] (2.4)

θ∗ = argmax
θ

[log(L)] (2.5)

After estimation of the GARCH models in-sample, out-sample analysis is done

by performing a rolling window approach. With assumptions: a window of 2500

observations and re-estimation every year.

2.2.2 ACD models

Following Ghalanos (2016), arguments of ACD models are specified as in Hansen

(1994). The skewness and kurtosis (shape) parameters which are constant in GARCH

models (or time-invariant), are here time-varying following a piecewise linear

dynamic. In equation (2.6) the parameters of the GARCH-ACD model are specified.

yt = α0 + α1 × εt,
εt = σt × zt,
zt ∼ ∆ (0, 1, ρt, ζt) ,
σ2
t = β0 + β1ε

2
t−1 + β2σ

2
t−1,

ρt = χ0 + χ1zt−1Izt−1<x + χ2zt−1Izt−1>x + ξ1ρ̄t−1,

ζt = κ0 + κ1 |zt−1| Izt−1<x + κ2 |zt−1| Izt−1>x + ψ1ζ̄t−1,

(2.6)

where yt, zt and σt are familiar from GARCH models. ρt and ζt are respectively

the time-varying skewness and shape parameter (with shape parameter meaning

here the tail-tickness) and the standardized residuals zt follows a distribution ∆

that has a skewness and shape parameter. ρt and zetat are following a piecewise

linear dynamic with I the indicator variable (taking one if the underlying expression

is true, 0 otherwise). x is a treshold value set to 0.

Again Ghalanos (2016) makes it easier to implement the somewhat complex ACD

models using the R language with package “racd”.
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2. Data and methodology

2.2.3 Analysis Tests VaR and CVaR

Unconditional coverage test of Kupiec (1995)

A number of tests are computed to see if the value-at-risk estimations capture the

actual losses well. A first one is the unconditional coverage test by Kupiec (1995).

The unconditional coverage or proportion of failures method tests if the actual

value-at-risk exceedances are consistent with the expected exceedances (a chosen

percentile, e.g. 1% percentile) of the VaR model. Following Kupiec (1995) and

Ghalanos (2020a), the number of exceedences follow a binomial distribution (with

thus probability equal to the significance level or expected proportion) under the

null hypothesis of a correct VaR model. The test is conducted as a likelihood ratio

test with statistic like in equation (2.7), with p the probability of an exceedence for

a confidence level, N the sample size and X the number of exceedences. The null

hypothesis states that the test statistic LRuc is χ2-distributed with one degree of

freedom or that the probability of failure p̂ is equal to the chosen percentile α.

LRuc = −2 ln

 (1− p)N−XpX(
1− X

N

)N−X (
X
N

)X
 (2.7)

Conditional coverage test of Christoffersen et al. (2001)

Christoffersen et al. (2001) proposed the conditional coverage test. It is tests

for unconditional coverage and serial independence. The serial independence is

important while the LRuc can give a false picture while at any point in time it

classifies inaccurate VaR estimates as “acceptably accurate” (Bali and Theodossiou

2007). For a certain VaR estimate an indicator variable, It(α), is computed as

equation (2.8).

It(α) =
{

1 if exceedence occurs
0 if no exceedence occurs . (2.8)

It involves a likelihood ratio test’s null hypothesis is that the statistic is χ2-

distributed with two degrees of freedom or that the probability of violation p̂
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2. Data and methodology

(unconditional coverage) as well as the conditional coverage (independence) is

equal to the chosen percentile α. While it tests both unconditional coverage as

independence of violations, only this test has been performed and the unconditional

coverage test is not reported.

Dynamic quantile test

Engle and Manganelli (2004) provides an alternative test to specify if a VaR model

is appropriately specified by proposing the dynamic quantile test. This test specifies

the occurrence of an exceedance (here hit) as in (2.9), with I(.) a function that

indicates when there is a hit, based on the actual return being lower than the

predicted VaR. θ is the confidence level. They test jointly H0 that the expected

value of hit is zero and that it is uncorrelated with any variables known at the

beginning of the period (B), notably the current VaR estimate and hits in previous

periods, specified as lagged hits. This is done by regressing hit on these variables as

in (2.10). Xδ corresponds to the matrix notation. Under H0, this regression should

have no explanatory power. As a final step, a χ2-distributed test statistic with

m degrees of freedom equal to the parameters to be estimated (constant, number

of hits and VaR estimate) is constructed as in (2.11).

Hitt = I (Rt < −VaRt(1− α))− (1− α), (2.9)

Hitt = δ0 + δ1Hitt−1 + . . .+ δpHitt−p + δp+1V aRt+
δp+2Iyear1,t + . . .+ δp+2+nIyearn,t + ut

(2.10)

Hitt = Xδ + ut ut =
{
α− 1 prob α
α prob (1− α)

δ̂′OLSX
′Xδ̂aOLS

(1− α)α ∼ χ2(m) (2.11)
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2. Data and methodology

CVaR Test

The Expected Shortfall (or CVaR) test by McNeil and Frey (2000) tests whether the

excess conditional shortfall has a mean of zero. Under the alternative hypothesis,

this mean is greater than zero. This test uses a one sided t-statistic and bootstrapped

p-values, as the distribution of the excess conditional shortfall is not assumed to

be normal. This test is performed as in Ardia et al. (2019).
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3
Empirical Findings

3.1 Density of the returns

3.1.1 MLE distribution parameters

In table 3.1 we can see the estimated parameters of the unconditional distribution

functions. Note that the Student-t and skewed Student-t distribution are usually

noted with degrees of freedom as parameters. For consistency, we have parameterized

them using limiting cases of the SGT-distribution. Note that to read the degrees of

freedom for the two distributions, it is simply 2η. They are presented for the Skewed

Generalized T-distribution (SGT) and limiting cases thereof previously discussed.

Additionally, maximum likelihood score and the Akaike Information Criterion (AIC)

are reported to compare goodness of fit of the different distributions but also taking

into account simplicity of the models. We find that the SGT-distribution has the

highest maximum likelihood score of all. All other distributions have relatively

similar likelihood scores, though slightly lower and are therefore not the optimal

distributions. However, when considering AIC it is a tie between SGT and SGED.

This provides some indication that we have a valid case to test the suitability of

different SGED-GARCH VaR models as an alternative for the SGT-GARCH VaR

models. While sacrificing some goodness of fit, the SGED distribution has the
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3. Empirical Findings

advantage of requiring one parameter less, which results in easier implementation.

For the SGT parameters the standard deviation and skewness are both significant at

the 1% level. For the SGED parameters, the standard deviation and the skewness

are both significant at respectively the 1% and 5% level. Both distributions are

right-skewed. For both distributions the shape parameters are significant at the 1%

level, though the η parameter was not estimated as it is by design set to infinity

due to the SGED being a limiting case of SGT.1

Additionally, for every distribution fitted with MLE, plots are generated to compare

the theoretical distribution with the observed returns and reported in the appendix.

We find that the normal distribution is not a good approximation. The theoretical

SGT, SGED and GED distributions are closer to the actual data, except that

they somewhat overestimate peakedness. The theoretical skewed and symmetric

Student-t distributions on the other hand underestimate peakedness. Visually,

the best match seems to be the SGT distribution, which is to be expected as it

has the highest log likelihood score.

1To check whether the relative ranking of distributions still holds in different periods, we have
calculated the maximum likelihood score and AIC for three smaller periods: The period up to
the dotcom collapse (1987-2001), up to the Global Financial Crisis (2002-2009) and up to the
present Covid-crash (2009-2021). There is no qualitative difference in relative ranking with these
subsamples.
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Table 3.1: Maximum likelihood estimates of unconditional distribution functions

dist α β ξ κ η LLH AIC
SGT 0.014 1.441 -0.02 1.233 4.959 -8850.419 17710.84

(0.025) (0.031)*** (0.016) (0.085)*** (1.368)***
SGED 0.015 1.42 0.008 0.898 Inf -8859.217 17710.84

(0.003)*** (0.015)*** (0.002)*** (0.018)***
GED 0 1.418 0 0.899 Inf -8859.537 17725.07

(0.002) (0.023)*** (0.022)***
ST 0.012 1.635 -0.043 2 2.817 -8873.843 17755.69

(0.02) (0.076)*** (0.016)*** (0.132)***
T 0.045 1.64 0 2 1.403 -8877.165 17760.33

(0.015)*** (0.078)*** (0.133)***
Normal 0.01 1.439 0 2 Inf -9477.660 18959.32

(0.02) (0.014)***
Notes:
Table contains parameter estimates for SGT-distribution and some of its limiting cases. The
underlying data is the daily return series of the Euro Stoxx 50 for the period between December
31. 1986 and April 27. 2021. Standard errors are reported between brackets. LLH is the
maximum log-likelihood value. *, ** and *** point out significance at 10, 5 and 1 percent
level.
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3. Empirical Findings

3.2 Constant higher moments

To compare the goodness-of-fit of different combinations of GARCH models and

distributions, we have portrayed the AICs in table 3.2. The smaller the criterium

the better. As you can see in table 3.2 the AIC for the skewed Student-t distribution

(ST) is the best for almost all the models. As also shown in appendix part B. Only

for the SGARCH and IGARCH the SGED distribution has a lower AIC. The best

goodness-of-fit over all distributions seems to be the NAGARCH model.

Due to 3.2 being the result of an in-sample estimation, we will further examine the

five best performing GARCH models according to the AIC (EGARCH, GJRGARCH,

NAGARCH, AVGARCH and TGARCH).

Table 3.2: Model selection according to AIC

SGARCH IGARCH EWMA EGARCH GJRGARCH NAGARCH TGARCH AVGARCH
N 3.174 3.176 3.198 3.114 3.124 3.107 3.111 3.107
T 3.130 3.130 3.140 3.079 3.089 3.074 3.077 3.074
ST 3.127 3.127 3.135 3.072 3.083 3.067 3.071 3.067
GED 3.128 3.128 3.139 3.080 3.089 3.075 3.079 3.076
SGED 3.125 3.126 3.136 3.075 3.084 3.069 3.073 3.069

Notes
This table shows the AIC value for the respective model.
With on the rows the distributions.
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3. Empirical Findings

Table 3.3 presents the maximum likelihood estimates for 8 GARCH models based

on the ST distribution with constant skewness and kurtosis parameters (robust

white errors are presented in parenthesis). The parameter α0 is only statistically

significant for the SGARCH, IGARCH and EWMA model with a value close to

0. The AR(1) coefficient, α1, has parameters going from -0.049 to -0.032 with

p values ranging from 0.011 to 0.014 suggesting significance, but indicating very

small negative autocorrelation. The GARCH parameters in the conditional variance

equations (β0) are generally statistically significant except for the EGARCH model.

The results of β1 and β2 show the presence of significant time-variation in the

conditional volatility of the Euro Stoxx 50, in fact, the sum of β1 and β2 for the

GARCH parameters is close to one (from 0.827 to 1), suggesting the presence of

persistence in the volatility of the returns. The parameter ξ is highly significant

for all the 8 models tested with values ranging from 0.885 to 0.918 confirming

the presence of skewness in the returns. The shape parameter η, which, in our

case, measures the number of degrees of freedom divided by two, determining

the tail behavior, is significant for all the models and ranges between 3.153 and

4.0635. The parameter γ, which is present only for EGARCH and GJRGARCH

is significant and with values around 0.14. The absolute value function in family

GARCH models (NAGARCH, TGARCH and AVGARCH) is subject to the shift

and the rot parameters whose values are always positive and statistically significant.

According to the log likelihood values (LLH), displayed in table 3.3, the model

with the highest value is AVGARCH, while excluding the non-standard (or family)

GARCH models from the analysis, the model that performs best is EGARCH.

Table 3.4 shows a very similar picture for the GARCH-SGED models. Compared

to the GARCH-ST models
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Table 3.3: Maximum likelihood estimates of the GARCH-ST models with constant skewness and kurtosis parameters

SGARCH IGARCH EGARCH GJRGARCH EWMA NAGARCH TGARCH AVGARCH
α0 0.052 0.052 0.014 0.019 0.055 0.004 0.013 0.003

(0.012)*** (0.013)*** (0.011) (0.012) (0.014)*** (0.012) (0.013) (0.013)
α1 -0.048 -0.048 -0.033 -0.043 -0.049 -0.034 -0.038 -0.032

(0.013)*** (0.013)*** (0.012)*** (0.012)*** (0.014)*** (0.012)*** (0.011)*** (0.012)**
β0 0.017 0.014 0.004 0.021 0 0.024 0.023 0.024

(0.004)*** (0.004)*** (0.003) (0.004)*** (0.003)*** (0.004)*** (0.002)***
β1 0.095 0.1 -0.155 0 0.072 0.06 0.078 0.068

(0.011)*** (0.011)*** (0.011)*** (0.01) (0.008)*** (0.013)*** (0.008)*** (0.004)***
β2 0.899 0.9 0.982 0.902 0.928 0.787 0.922 0.899

(0.011)*** (0)*** (0.013)*** (0.022)*** (0.009)*** (0)***
ξ 0.918 0.918 0.89 0.895 0.915 0.885 0.891 0.885

(0.017)*** (0.017)*** (0.017)*** (0.016)*** (0.016)*** (0.017)*** (0.017)*** (0.017)***
η 3.301 3.153 3.95 3.868 3.624 4.062 4.0335 4.0635

(0.325)*** (0.273)*** (0.4355)*** (0.422)*** (0.285)*** (0.46)*** (0.451)*** (0.457)***
γ 0.107 0.177

(0.011)*** (0.02)***
shift 1.567 0.393

(0.332)*** (0.014)***
rot 1 1

(0.069)*** (0.117)***
LLH -8303.694 -8304.437 -8158.11 -8186.06 -8328.667 -8143.563 -8154.785 -8143.141
Notes:
This table shows the maximum likelihood estimates of various GARCH-ST models. The daily returns used on the
Euro Stoxx 50 cover the period from 03 January, 2001 to 19 May, 2021 (5316 observations).
The mean process is modeled as follows: Rt = α0 + α1 ×Rt−1 + εt Where, in the 8 GARCH models estimated, γ is
the asymmetry in volatility, ξ, κ and η are constant and robust standard errors based on the method of White
(1982)) are displayed in parenthesis. LLH is the maximized log likelihood value.
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Table 3.4: Maximum likelihood estimates of the GARCH-SGED models with constant skewness and kurtosis parameters

SGARCH IGARCH EGARCH GJRGARCH EWMA NAGARCH TGARCH AVGARCH
α0 0.046 0.045 0.008 0.014 0.046 0 0.007 -0.002

(0.011)*** (0.012)*** (0.008) (0.012) (0.015)*** (0.008) (0.012) (0.012)
α1 -0.055 -0.055 -0.041 -0.05 -0.056 -0.043 -0.047 -0.041

(0.013)*** (0.014)*** (0.012)*** (0.013)*** (0.016)*** (0.012)*** (0.011)*** (0.012)***
β0 0.02 0.015 0.005 0.023 0 0.025 0.024 0.025

(0.005)*** (0.004)*** (0.002)** (0.004)*** (0.003)*** (0.005)*** (0.002)***
β1 0.096 0.104 -0.151 0 0.07 0.059 0.077 0.067

(0.012)*** (0.012)*** (0.01)*** (0.01) (0.008)*** (0.007)*** (0.01)*** (0.003)***
β2 0.895 0.896 0.981 0.901 0.93 0.793 0.922 0.897

(0.012)*** (0)*** (0.014)*** (0.009)*** (0.01)*** (0)***
ξ 0.935 0.936 0.901 0.906 0.93 0.896 0.902 0.896

(0.021)*** (0.023)*** (0.019)*** (0.02)*** (0.02)*** (0.017)*** (0.019)*** (0.018)***
η

γ 0.107 0.175
(0.01)*** (0.021)***

shift 1.547 0.435
(0.147)*** (0.012)***

rot 1 0.959
(0.076)*** (0.101)***

LLH -8300.515 -8302.804 -8164.576 -8189.218 -8330.811 -8149.596 -8160.239 -8149.518
Notes:
This table shows the maximum likelihood estimates of various GARCH-SGED models. The daily returns used on
the Euro Stoxx 50 Price index cover the period from 03 January, 2001 to 19 May, 2021 (5316 observations).
The mean process is modeled as follows: Rt = α0 + α1 ×Rt−1 + εt Where, in the 8 GARCH models estimated, γ
is the asymmetry in volatility, ξ, κ and η are constant and robust standard errors based on the method of White
(1982)) are displayed in parenthesis. LLH is the maximized log likelihood value.
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3.2.1 Value-at-risk

As already mentioned 2 candidate models seem to be most appropriate: EGARCH

and NAGARCH. To check if they perform well out-of-sample we conduct a backtest

by using a rolling forecasting technique. A simple graph is shown in figure 3.1 for

the EGARCH-ST model. It seems that the VaR model for α = 0.05 underestimates

the downside events, while the VaR model for α = 0.01 captures more of the

downside events.
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Figure 3.1: Value-at-Risk (in-sample) for the EGARCH-ST model

Let us examine this further using a rolling window approach whilst forecasting

1-day ahead results (using a sample data of 2500 observations or approximately 10

years) with re-estimating parameters every year.

Figure 3.2 shows that choosing an appropriate forecast period is important (with here

the Eurobond crisis, the Brexit and Covid-crisis), so in order to avoid a look-ahead

bias this rolling window approach was used instead of a static forecast method.
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Figure 3.2: Selected period to start forecast from

If we look at the results of the rolling window, we can for example compare as in

figure 3.3 the EGARCH-ST (with skewed Student-t distribution) with the EGARCH-

N (with normal distribution). The EGARCH-N seems to capture the extreme events

a bit less compared to EGARCH-ST. Next, we will apply some diagnostic tests to

investigate this formally.
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Figure 3.3: Comparison between VaR-EGARCH-ST and VaR-EGARCH-N

In table 3.5 the results of these tests are given. With the SGED as underlying

distribution, the ratio of actual to expected VaR exceedances is highest for the

GJRGARCH model, with an excess exceedance rate of 24%. The other GARCH

models still have a positive but slightly lower excess exceedance rate of 21%. The

ratio of actual to expected CVaR exceedances gives a similar picture, with the

highest excess exceedance rate being the GJRGARCH with 25% and for the other

models 21%. These results are significant at the 5% level, except for the NAGARCH,

which is significant only at the 10% level. This points that the difference between

actual and expected exceedances is significantly different from 0. For all models

under the SGED, the unconditional and conditional cover test and the dynamic

quantile test statistics are insignificant. This suggests that the SGED is a good

distribution for calculating VaR and CVaR.

With the ST as underlying distribution, the ratio of actual to expected VaR

exceedances is highest for the TGARCH model, with an excess exceedance rate of
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28%. The NAGARCH model has the lowest VaR excess exceedance rate of 17%.

For the CVaR excess exceedance rate, there is a similar picture, with the TGARCH

having an excess exceedance rate of 29% and the NAGARCH of 18%. These results

are insignificant, thus it cannot be concluded that the excess exceedance for VaR

and CVaR are significantly different from 0. Both the unconditional and conditional

cover tests are insignificant. However, the dynamic quantile test is significant at the

10% level for the EGARCH and TGARCH. This suggests that the ST distribution is

a good distribution for calculating VaR and CVaR, though not as good as the SGED.

The GED, T and Normal distribution have significant unconditional and conditional

and dynamic quantile test statistics for most models, which suggest they are less

appropriate for modeling VaR and CVaR.
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Table 3.5: VaR and CVaR test statistics

EGARCH GJRGARCH TGARCH NAGARCH AVGARCH
Panel A: SGED

AE VaR 1.207 1.243 1.207 1.207 1.207
AE CVaR 1.214** 1.25** 1.214** 1.214* 1.214**
UC 1.147 1.558 1.147 1.147 1.147
CC 1.979 2.439 1.979 1.979 1.979
DQ 7.757 13.286 12.578 5.223 5.846

Panel B: GED
AE VaR 1.456 1.456 1.491 1.456 1.385
AE CVaR 1.464*** 1.464** 1.5*** 1.464** 1.393***
UC 5.184** 5.184** 5.969** 5.184** 3.764*
CC 6.396** 6.396** 7.242** 6.396** 4.859*
DQ 20.235*** 16.564** 19.584** 11.688 10.508

Panel C: ST
AE CVaR 1.207 1.243 1.278 1.172 1.243
AE CVaR 1.214 1.25 1.286 1.179 1.25
UC 1.147 1.558 2.026 0.796 1.558
CC 1.979 2.439 2.959 1.579 2.439
DQ 15.071* 13.002 13.935* 4.552 6.841

Panel D: T
AE VaR 1.527 1.562 1.562 1.491 1.598
AE CVaR 1.536 1.571 1.571* 1.5 1.607
UC 6.803*** 7.683*** 7.683*** 5.969** 8.61***
CC 8.137** 9.081** 9.081** 7.242** 10.072***
DQ 0.012 18.986** 22.759*** 17.376** 25.561***

Panel E: N
AE VaR 1.953 1.882 1.953 1.74 1.776
AE CVaR 1.964*** 1.893*** 1.964*** 1.75*** 1.786***
UC 20.217*** 17.575*** 20.217*** 12.76*** 13.904***
CC 22.409*** 19.609*** 22.409*** 14.496*** 15.712***
DQ 36.498*** 32.87*** 39.472*** 27.102*** 37.614***

Notes:
Table contains the ratio of actual to expected exceedances for VaR and Conditional
VaR, the unconditional and conditional coverage test statistic and the dynamic
quantile test statistic for VaR. Significance levels for the VaR ratio not reported. *,
** and *** point out significance at 10, 5 and 1 percent level.
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3.3 Time-varying higher moments

As we already pointed out in part 1.3, it might also be interesting to look at

time-varying moments and check if there is an improvement for estimating the VaR

and CVaR as Bali, Mo, et al. (2008) did for example.

Table 3.6: Maximum likelihood estimates of the ST-ACD model with constant skewness
and kurtosis parameters

ACD GARCH
α0 0.054 (0.111)
α1 -0.044 (0.216)
β0 0.02
β1 0.098 (0.002)***
β2 0.892 (0.009)***
χ0 -1.548 (13.208)
χ1 0.046 (0.401)
χ2 0.032 (0.488)
ξ1 0.563 (3.778)
κ0 0.127 (0.196)
κ1 0 (0.175)
κ2 1 (0.249)***
ψ1 0.788 (0.101)***

Notes:
This table shows the maximum likelihood estimates of various GARCH-SGED
models. The daily returns used on the Euro Stoxx 50 Price index cover the
period from 03 January, 2001 to 19 May, 2021 (5316 observations).
The mean process is modeled as follows: Rt = α0 + α1 × Rt−1 + εt Where,
in the model estimated, γ is the asymmetry in volatility, (calculated using
robust standard errors based on the method of White (1982)) are displayed in
parenthesis.

The following figure 3.4 plots the conditional mean, the conditional volatility. The

implied conditional time varying skewness and excess kurtosis for the Euro Stoxx

50 series, which are similar to illustrations given by Galanos2.

2http://www.unstarched.net/2013/04/22/time-varying-higher-moments-with-the-racd-package/
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Figure 3.4: Dynamics of the ACD model

After performing a backtest3, we observe that the ACD model is slightly worse

than the GARCH equivalent in estimating the VaR. Although there are much less

models tested here because of the difficulty of the procedure of ACD models, we

find less convincing evidence of the merit of using conditional higher moments in

VaR and CVaR estimation. So contrary to Bali, Mo, et al. (2008), we find that

the ACD models seem to underperform relative to the GARCH model. With a

rejection of unconditional coverage test statistic at 10% significance level. It is not

surprising that the GARCH model performs bad as well looking at the rejection

of the dynamic quantile test and the CVaR test.

3This backtest contains the following features: recursive, window of 2500, refitted every 250
trading days (approximately one year).
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Table 3.7: VaR and ES test statistics (ACD-ST vs GARCH-ST)

ACD GARCH
AE VaR 1.357 1.286
AE CVaR 1.357** 1.286**
UC 3.131* 2.026
CC 4.171 2.959
DQ 16.118** 14.587*

Notes:
Table contains the ratio of actual to expected exceedances for VaR and Expected
Shortfall, the unconditional and conditional coverage test statistic and the
dynamic quantile test statistic for VaR. Significance levels for the VaR ratio not
reported. *, ** and *** point out significance at 10, 5 and 1 percent level.
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Robustness checks

In order to check if the models are specified correctly, some diagnostic checks have

to be performed. The specification checks have to be done on the standardized

residuals of the estimated GARCH model given by the following equation:

Ẑt = ε̂t
σ̂t

= Rt − µ̂
σ̂t

.

Table 4.1 contains the results of two tests. Panel A displays the Ljung-box test on

the squared standardized residuals of the GARCH models. Panel B displays the

ARCH LM test on the squared standardized residuals. The ARCH LM test checks if

the ARCH process is adequately fitted. As can be seen for both tests, the EGARCH,

AVGARCH, NAGARCH and TGARCH do not suffer from any correlation in

the squared residuals. For EWMA there is highly significant correlation of the

residuals for all underlying distributions, suggesting that the model is inappropriate

for VaR and CVaR estimation.
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Table 4.1: Diagnostic Tests for Heteroscedasticity

SGARCH EGARCH AVGARCH NAGARCH GJRGARCH TGARCH IGARCH EWMA
Panel A: Ljung Box Test on the standardized squared values of the residuals
Norm 31.157* 25.321 22.263 23.03 32.186* 26.208 32.727* 44.066***
T 33.907** 24.81 21.321 21.862 34.34** 26.658 34.183** 41.765***
ST 33.961** 25.024 21.412 22.051 34.607** 26.811 34.187** 40.605***
GED 32.493* 24.826 21.63 22.191 33.365* 26.142 33.361* 42.627***
SGED 32.569* 25.065 21.57 22.341 33.747* 26.351 33.342* 41.333***

Panel B: ARCH LM Test on the standardized squared values of the residuals
Norm 32.322* 26.461 23.081 23.474 34.475** 26.991 33.857* 42.773***
T 34.687** 25.958 22.063 22.218 37.875** 27.634 34.912** 40.719***
ST 34.605** 26.138 22.129 22.36 38.174** 27.718 34.756** 39.559**
GED 33.431* 25.973 22.433 22.598 36.379** 27.023 34.228** 41.433***
SGED 33.393* 26.173 22.319 22.698 36.859** 27.167 34.071** 40.155***

Notes
Table displays the Ljung box statistics and the ARCH LM Test for the standardized squared residuals of the
models analyzed. The underlying data is the daily return series of the Euro Stoxx 50 for the period between
2001-01-03 and 2021-05-19.
*, ** and *** point out respectively significance at 10, 5 and 1 percent level.
The null hypothesis of the test in both panels are described as follows:
H0: Corr(Z2

t ,Z2
t−1)=Corr(Z2

t ,Z2
t−2)= ... =Corr(Z2

t ,Z2
t−22) = 0
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The Generalized Method of Moments (GMM) test by Hansen (1982) is also a

test that checks if the model is correctly specified or not, by examining the

moments of the standardized residuals. Here only the results of the t-tests for

the four individual moments are examined from the GMM test[ˆfindings-3]. The

mean (first moment) should be equal to zero (E [zt] = 0). The variance (second

moment) should be equal to one (E [z2
t − 1] = 0). The skewness should be equal

to zero and the excess kurtosis (third and fourth moment) should be equal to

zero (respectively E [z3
t ] = 0 and E [z4

t − 3] = 0). Table 4.2 portrays the results

of the GMM test. Only the AVGARCH and NAGARCH models fail to reject

the null-hypothesis that the moments are significantly different from the normal

distribution for all underlying distributions. TGARCH fails to reject the null-

hypothesis for all distributions, except for the Student-t. Similarly, EGARCH fails

to reject it for the GED and Student-t. The SGARCH, IGARCH and EWMA

reject the null-hypothesis with high significance for all distributions and are thus

not suited for VaR and CVaR estimation.
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Table 4.2: GMM Tests

SGARCH EGARCH AVGARCH NAGARCH GJRGARCH TGARCH IGARCH EWMA
Panel A: SGED
Mean -0.036** -0.002 0.007 0.006 -0.006 -0.001 -0.036** -0.039***
Variance 0.015** 0.009 0.007 0.007 0.01 0.008 -0.016** 0.121***
Skewness -0.46** -0.392 -0.374 -0.381 -0.406 -0.374 -0.443** -0.566***
Excess Kurtosis 1.974** 1.782 1.809 1.803 1.693 1.696 1.755** 3.821***

Panel B: GED
Mean -0.051*** -0.024* -0.015 -0.017 -0.026* -0.022 -0.05*** -0.051***
Variance 0.004*** 0.004* 0.004 0.004 0.003* 0.003 -0.024*** 0.12***
Skewness -0.49*** -0.452* -0.438 -0.444 -0.459* -0.435 -0.476*** -0.602***
Excess Kurtosis 1.858*** 1.763* 1.815 1.809 1.662* 1.689 1.661*** 3.824***

Panel C: ST
Mean -0.042*** -0.009 0.002 0.001 -0.012 -0.007 -0.042*** -0.049***
Variance 0.006*** 0.005 0.003 0.003 0.004 0.005 -0.016*** 0.124***
Skewness -0.473*** -0.414 -0.388 -0.396 -0.421 -0.393 -0.46*** -0.596***
Excess Kurtosis 1.944*** 1.79 1.809 1.808 1.671 1.702 1.777*** 3.855***

Panel D: T
Mean -0.059*** -0.03** -0.019 -0.02 -0.032** -0.027* -0.059*** -0.062***
Variance -0.007*** 0.001** 0.003 0.002 -0.001** 0.002* -0.024*** 0.124***
Skewness -0.511*** -0.473** -0.452 -0.458 -0.476** -0.451* -0.501*** -0.638***
Excess Kurtosis 1.812*** 1.783** 1.848 1.84 1.658** 1.707* 1.674*** 3.856***

Panel E: N
Mean -0.051*** -0.007 0.004 0.002 -0.01 -0.004 -0.051*** -0.047***
Variance 0.001*** 0.001 0 0 0.001 0 -0.035*** 0.118***
Skewness -0.482*** -0.391 -0.371 -0.378 -0.405 -0.372 -0.465*** -0.583***
Excess Kurtosis 1.775*** 1.684 1.736 1.721 1.605 1.616 1.516*** 3.807***

Notes Table displays the GMM test statistics for the standardized residuals. The underlying data is the daily return
series of the Euro Stoxx 50 for the period between 2001-01-03 and 2021-05-19. The null hypothesis of the test for each
variable are described as follows: H0 : E[zt] = 0 for the mean, H0 : E[z2

t − 1] = 0 for the variance. H0 : E[z3
t ] = 0 for the

skewness and H0 : E[z4
t − 3] = 0 for the excess kurtosis.
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Figure 4.1 shows again that the normal distribution is not a good choice as an

assumption for the innovation process. The best models seem to be the ST and the

SGED. While this is just eye-balling, it should be noted that our results point in

the same direction: skewed distributions seem to model the data better.

Figure 4.1: QQ plots of AVGARCH residuals using various distributions
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5
Conclusion

This paper tested whether including higher-order moments in VaR and CVaR would

make for more accurate risk measurement. The starting point for this was that

there is a strong body of literature that suggests market returns are leptokurtic and

right-skewed. We chose to focus on daily data and forecast one period ahead, as this

is the most relevant for short-term trading desks and the requirements of regulators.

Inspired by Bali, we selected 5 different distributions and 8 different GARCH models,

for a total of 40 combinations, to estimate VaR and CVaR (different variations

of ARMA order shown in the appendix B suggest that this only slighlthy affects

results in comparison with the choice of the underlying distribution or GARCH

model choice). We used daily data from the Euro Stoxx 50 return index between

2001 and 2021, a period which includes both major market crises from the 21th

century: the Global Financial Crisis and the Covid-19 pandemic.

Our studied distributions are all limiting cases of the SGT-distribution studied by

Bali, namely the SGED, GED, ST, T and normal distribution. To provide some

intuition on which distributions most closely match the observed log returns, we

performed maximum likelihood estimation and compared the Aikaike Information

Criterions to penalize complexity. We found that the SGED distribution is as good
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as the SGT (due to having one less parameter to estimate, even though it fits

the data slightly worse). The normal distribution fitted the observed returns the

worst, with both the maximum likelihood score and the AIC underperforming the

other distributions. This affirmed previous literature that the normal distribution

is inadequate to model returns.

As a second step we estimated the 8 GARCH models (SGARCH, IGARCH,

EGARCH, EWMA, GJRGARCH, NAGARCH, TGARCH and AVGARCH) with

the 5 underlying distributions in-sample and again reported the AIC. We found

that the best model to forecast 1 day returns was the AVGARCH-ST. The ST

distribution is generally the most performing over all GARCH models, with SGED

being slightly better only for the SGARCH and IGARCH. We reported on the

parameters of the different GARCH models for these two distributions, and find

that the skewness and shape parameters are highly significant, suggesting that

indeed higher order moments are relevant for estimating VaR and CVaR.

To avoid look-ahead bias as introduced by in-sample estimation, we applied a rolling

window technique to 25 combinations (selecting the 5 best GARCH models on

the basis of AIC). Here we refitted every 22 trading days and forecast 1 trading

day. Subsequently we computed the VaR and cVaR and compared results for 4

performance tests: the ESTest McNeil and Frey (2000), Unconditional Coverage

test, Conditional Coverage test and Dynamic Quantile test. We found that the

smallest difference between predicted and actual exceedances over the V aR99

was for the NAGARCH-ST. For most other models the SGED distribution has

the smallest difference. For the CV aR99 and associated ESTest, the results are

that the SGED distribution gives the smallest difference between predicted and

actual exceedances for the TGARCH and the AVGARCH and the same as the ST

distribution for EGARCH and GJRGARCH. For both distributions, the uc, cc and

dq are insignificant. The other distributions have significant values for the cc and

uc test and for the most part for the dq test and are thus not as suitable for (C)VaR
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estimation.

To our knowledge, there has been little research on including time-varying moments

beyond the variance in (C)VaR estimation. We allow for skewness and shape

parameters to vary using an ACD model as proposed by Ghalanos (2016) We

compared the results of the SGARCH-ST model with the ACD-ST model and

concluded that allowing higher moments to vary over time gives better goodness-of-

fit in terms of maximum log-likelihood and AIC and more parameters (especially the

shape parameters) significant. However it did not improve the (C)VaR estimation

for any of the 4 performance tests. Future research might study ACD models for

different GARCH models, than the standard one, better (C)VaR tests.

We performed 4 different robustness checks on the in-sample GARCH estimations

to test if the residuals are normally distributed. First, we performed the Ljung-Box

Test on the residuals and reject the null-hypothesis that there is no serial correlation

of variance. Second, we applied the ARCH LM test on absolute, and squared

residuals of our GARCH models and came to the same conclusion as with the

Ljung-Box test (these are similar tests, except that the former tests the ARMA

process and the latter the ARCH process). Third, we performed the GMM test

to see if the residuals have moments equal to those of of the normal distribution.

We find that this hypothesis can be rejected with high significance. Last, we

performed the Jarque-Bera test to test if the kurtosis and skewness matches the

normal distribution. We reject this hypothesis as well. There is thus ample evidence

that the residuals are non-normal.

To conclude by answering the research question “Do higher moments increase

accuracy in the estimation of VaR and CVaR?”, we can answer in the positive,

though caution that more model complexity might not always mean better VaR

and cVaR estimation.
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A
Appendix to literature review

Alternatives to the normal distribution

SGT (Skewed Generalized t-distribution) The SGT distribution is introduced

by Theodossiou (1998) and applied by Bali and Theodossiou (2007) and Bali, Mo,

et al. (2008). According to Bali, Mo, et al. (2008) the proposed solutions (use

of historical simulation, student’s t-distribution, generalized error distribution

or a mixture of two normal distributions) to the non-normality of standardized

financial returns only partially solved the issues of accounting for skewness and

leptokurtosis.The Pdf of the SGT distribition is given by eqution (A.1). B is the

beta function (also called Euler integral).

fSGT (x;µ, σ, ξ, κ, η) = κ

2vση1/κB( 1
κ
,η)( |x−µ+m|κ

η(vσ)κ(ξ sign(x−µ+m)+1)κ+1)
1
κ+η

m = 2vσξη
1
κB( 2

κ
,η− 1

κ)
B( 1

κ
,η)

v = η−
1
κ√

(3ξ2+1)
B( 3

κ ,η−
2
κ)

B( 1
κ ,η)

−4ξ2
B( 2

κ ,η−
1
κ)2

B( 1
κ ,η)2

(A.1)
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Figure A.1: SGT distribution and limiting cases

Following Theodossiou (1998) however, there are two parameters, κ1and η2) for the

shape in the SGT distribution. κ is the peakedness parameter. η is the tail-thickness

parameter. It is equal to the degrees of freedom ν divided by 2 if ξ = 0 and κ = 2.

As shown in the following figure3 A.1 by Carter Davis, from the SGT the other

distributions in the figure are limiting cases of the SGT.

Student’s t-distribution A common alternative for the normal distribution is

the Student t distribution. Similarly to the normal distribution, it is also symmetric

(skewness is equal to zero if ν > 3). The probability density function (pdf),

consistent with Ghalanos (2020a), is given by equation (A.2). As will be seen in

1.2, GARCH models are used for volatility modeling in practice. Bollerslev (1987)

examined the use of the GARCH-Student or GARCH-t model as an alternative

to the standard Normal distribution, which relaxes the assumption of conditional

normality by assuming the standardized innovation to follow a standardized Student

t-distribution (Bollerslev 2008).

1Referred to as κ by Theodossiou (1998) and Bali, Mo, et al. (2008), but p by Carter Davis in
the “sgt” package.

2Also referred to as n by Theodossiou (1998) and η by Bali, Mo, et al. (2008), but q by Carter
Davis in the “sgt” packages.

3Source: https://cran.r-project.org/web/packages/sgt
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f(x;µ, σ, ν) =
Γ(ν + 1

2 )

Γ(ν2)
√
σπν

(
1 + (x− µ)2

σν

)−(ν+1)/2

(A.2)

where µ, σ and ν are respectively the mean, scale and shape (tail-thickness)

parameters. ν/2 is equal to the η4 parameter of the SGT distribution with other

restrictions (see part A). The symbol Γ is the Gamma function.

Unlike the normal distribution, which depends on two parameters only, the student

t distribution allows for fatter tails. This kurtosis coefficient is given by equation

(A.3) if ν > 4. This is useful while the standardized residuals of stock returns

appear to have fatter tails than the normal distribution following Bollerslev (2008).

kurt = 3 + 6
ν − 4 (A.3)

Generalized Error Distribution The GED distribution is nested in the general-

ized t distribution by McDonald and Newey (1988) and is used in the GED-GARCH

model by Nelson (1991) to model stock market returns. This model replaced

the assumption of conditional normally distributed error terms by standardized

innovations that following a generalized error distribution. It is a symmetric, uni-

modal distribution (location parameter is the mode, median and mean). This is

also sometimes called the exponential power distribution (Bollerslev 2008). The

conditional density (pdf) is given by equation (A.4) following Ghalanos (2020a).

f(x;µ, σ, κ) = κe
− 1

2

∣∣∣∣x− µσ
∣∣∣∣κ

21+1/κσΓ(1/κ) (A.4)

where µ, σ and κ are respectively the mean, scale and shape parameters.

4Also referred to as n by Theodossiou (1998) or q by Carter Davis in the “sgt” package.
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Skewed t-distribution The density function can be derived following Fernández

and Steel (1998) who showed how to introduce skewness into uni-modal standardized

distributions (Trottier and Ardia 2015). The first equation from Trottier and Ardia

(2015), here equation (A.5) presents the skewed t-distribution.

fξ(z) ≡ 2σξ
ξ + ξ−1f1 (zξ) , zξ ≡

{
ξ−1 (σξz + µξ) if z ≥ −µξ/σξ
ξ (σξz + µξ) if z < −µξ/σξ

(A.5)

where µξ ≡M1 (ξ − ξ−1) , σ2
ξ ≡ (1−M2

1 ) (ξ2 + ξ−2)+2M2
1−1, M1 ≡ 2

∫∞
0 uf1(u)du

and ξ between 0 and ∞. f1(·) is in this case equation (A.2), the pdf of the

student t distribution coming to equation (A.6), which has the parameterization

following the SGT parameters.

fST (x;α, β, ξ, η) = Γ( 1
2 +η)

√
βπηΓ(η)

(
|x−α+m|2

ηβ(ξ sign(x−α+m)+1)2 +1
) 1

2 +η

m = 2ξ
√
βηΓ(η− 1

2)
√
πΓ(η+ 1

2)

(A.6)

According to Giot and Laurent (2003) as well as Giot and Laurent (2004), the

skewed t-distribution outperforms the symmetric density distributions.

Skewed Generalized Error Distribution A further distribution to analyse is

the SGED distribution of Theodossiou (2000). It is applied in GARCH models by

Lee et al. (2008). The SGED distribution extends the Generalized Error Distribution

(GED) to allow for skewness and leptokurtosis. The density function can be derived

following Fernández and Steel (1998) who showed how to introduce skewness into uni-

modal standardized distributions (Trottier and Ardia 2015). It can also be found in

Theodossiou (2000). The pdf is then given by the same equation (A.5) as the skewed

t-distribution but with f1(·) equal to equation (A.4). To then get equation (A.7).
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fSGED(x;µ, σ, ξ, κ) = κe
−( |x−µ+m|

vσ(1+ξ sig(x−µ+m)))
κ

2νσΓ(1/κ)

m = 2
2
κ νσξΓ( 1

2 + 1
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Γ( 1
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(A.7)

ARCH models

From the components of the ARCH model described in part 1.2.2 we could look at

the conditional moments (or expected returns and variance). We can plug in the

component σt into the conditional mean innovation εt and use the conditional mean

innovation to examine the conditional mean return. In equation (A.8) and (A.9)

they are derived. Because the random variable zt is distributed with a zero-mean,

the conditional expectation is 0. As a consequence, the conditional mean return in

equation (A.9) is equal to the unconditional mean in the most simple case. But

variations are possible using ARMA (eg. AR(1)) processes.

Et−1(εt) = Et−1(
√
β0 + β1 × ε2

t−1 × zt) = σtEt−1(zt) = 0 (A.8)

Et−1(yt) = α0 + Et−1(εt) = α0 (A.9)

For the conditional variance, knowing everything that happened until and including

period t− 1 the conditional innovation variance is given by equation (A.10). This

is equal to σ2
t , while the variance of zt is equal to 1. Then it is easy to derive

the conditional variance of returns in equation (A.11), that is why equation (1.3)

is called the variance equation.

vart−1(εt) = Et−1(ε2
t ) = Et−1(σ2

t × z2
t ) = σ2

tEt−1(z2
t ) = σ2

t (A.10)
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vart−1(yt) = vart−1(εt) = σ2
t (A.11)

The unconditional variance is also interesting to derive, while this is the long-run

variance, which will be derived in equation (A.15). After deriving this using the

law of iterated expectations and assuming stationarity for the variance process, one

would get equation (A.12) for the unconditional variance, equal to the constant

β0 and divided by 1 − β1, the slope of the variance equation.

σ2 = β0

1− β1
(A.12)

This leads to the properties of ARCH models: Stationarity5 condition for variance:

β0 > 0 and 0 ≤ β1 < 1. But also, zero-mean innovations and uncorrelated

innovations. Thus a weak white noise process εt. The unconditional 4th moment,

kurtosis E(ε4
t )/σ4 of an ARCH model is given by equation (A.13). This term is

larger than 3, which implicates fat-tails.

3 1− β2
1

1− 3β2
1

(A.13)

Another property of ARCH models is that it takes into account volatility clustering.

Because we know that var(εt) = E(ε2
t ) = σ2 = β0/(1 − β1), we can plug in β0

for the conditional variance vart(εt+1) = E(ε2
t+1) = σ2

t+1 = β0 + β1 × ε2
t . Thus

it follows that equation (A.14) displays volatility clustering. If we examine the

RHS, as β1 > 0 (condition for stationarity), when shock ε2
t is larger than what you

expect it to be on average σ2 the LHS will also be positive. Then the conditional

variance will be larger than the unconditional variance. Briefly, large shocks will

be followed by more large shocks.

σ2
t+1 − σ2 = β1 × (ε2

t − σ2) (A.14)
5Stationarity implies that the series on which the ARCH model is used does not have any trend

and has a constant expected mean. Only the conditional variance is changing.
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Excess kurtosis can be modeled, even when the conditional distribution is assumed

to be normally distributed. The third moment, skewness, can be introduced using

a skewed conditional distribution as we saw in part A. The serial correlation for

squared innovations is positive if fourth moment exists (equation (A.13), this is

volatility clustering once again.

How will then the variance be forecasted? Well, the conditional variance for the

k-periods ahead , denoted as period T + k, is given by equation (A.15). This can

already be simplified, while we know that σ2
T+1 = β0 + β1 × ε2

T from equation (1.3).

ET (ε2
T+k) = β0 × (1 + β1 + ...+ βk−2

1 ) + βk−1
1 × σ2

T+1

= β0 × (1 + β1 + ...+ βk−1
1 ) + βk1 × σ2

T

(A.15)

It can be shown that then the conditional variance in period T+k is equal to equation

(A.16). The LHS is the predicted conditional variance k-periods ahead above its

unconditional variance, σ2. The RHS is the difference current last-observed return

residual ε2
T above the unconditional average multiplied by βk1 , a decreasing function

of k (given that 0 ≤ β1 < 1). The further ahead predicting the variance, the closer

βk1 comes to zero, the closer to the unconditional variance, i.e. the long-run variance.

ET (ε2
T+k)− σ2 = βk1 × (ε2

T − σ2) (A.16)

GARCH models

All the GARCH models are estimated using the package “rugarch” by Ghalanos

(2020b). We use specifications similar to Ghalanos (2020a). Parameters have to be

restricted so that the variance output always is positive, except for the EGARCH

model, as this model mathematically ensures the output is positive.

Symmetric (normal) GARCH model The standard GARCH model (Bollerslev

1986) is written consistent with Ghalanos (2020a) as in equation (A.17) without

external regressors.
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σ2
t = β0 + β1ε

2
t−1 + β2σ

2
t−1 (A.17)

where σ2
t denotes the conditional variance, β0 the intercept and ε2

t the residuals from

the used mean process. The GARCH order is defined by (q, p) (ARCH, GARCH),

which is here (1, 1). As Ghalanos (2020a) describes: "one of the key features of

the observed behavior of financial data which GARCH models capture is volatility

clustering which may be quantified in the persistence parameter P̂ specified as in

equation (A.18) for a GARCH model of order (1, 1).

P̂ = β1 + β2. (A.18)

The unconditional variance of the standard GARCH model of Bollerslev is very

similar to the ARCH model, but with the Garch parameter (β2) included as

in equation (A.19).

σ̂2 = β0

1− P̂

= β0

1− β1 − β2

(A.19)

IGARCH model Following Ghalanos (2020a), the integrated GARCH model

(Bollerslev 1986) can also be estimated. This model assumes the persistence

P̂ = 1. This is done by Ghalanos, by setting the sum of the ARCH and GARCH

parameters to 1. Because of this unit-persistence, the unconditional variance

cannot be calculated.

GJRGARCH model The GJRGARCH model (Glosten et al. 1993), which

is an alternative for the asymmetric GARCH (AGARCH) by Engle (1990) and

Engle and Ng (1993), models both positive as negative shocks on the conditional

variance asymmetrically by using an indicator variable It − 1, it is specified as

in equation (A.20).
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σ2
t = β0 + β1ε

2
t−1 + γjIt−1ε

2
t−1 + β2σ

2
t−1 (A.20)

where γj represents the leverage term. The indicator function I takes on value

1 for ε ≤ 0, 0 otherwise. Because of the indicator function, persistence of the

model now crucially depends on the asymmetry of the conditional distribution

used according to Ghalanos (2020a).

EGARCH model The EGARCH model or exponential GARCH model (Nelson

1991) is defined as in equation (A.21). The advantage of the EGARCH model is

that there are no parameter restrictions, since the output is log variance (which

cannot be negative mathematically), instead of variance.

loge(σ2
t ) = β0 + β1zt−1 + γ1(|zt−1| − E|zt−1|) + β2 loge(σ2

t−1) (A.21)

where β1 captures the sign effect and γj the size effect.

NAGARCH model The NAGARCH or nonlinear asymmetric model (Engle

and Ng 1993). It is specified as in equation (A.22). The model is asymmetric as it

allows for positive and negative shocks to differently affect conditional variance and

nonlinear because a large shock is not a linear transformation of a small shock.

σ2
t = β0 + β1(εt−1 + γ1

√
σt−1)2 + β2σ

2
t−1 (A.22)

As before, γ1 represents the leverage term.

TGARCH model The TGARCH or threshold model (Zakoian 1994) also models

asymmetries in volatility depending on the sign of the shock, but contrary to the

GJRGARCH model it uses the conditional standard deviation instead of conditional

variance. It is specified as in (A.23).

σt = β0 + β+
1 ε

+
t−1 − β−1 ε−t−1 + β2σt−1 (A.23)
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where ε+
t−1 is equal to εt−1 if the term is negative and equal to 0 if the term is

positive. The reverse applies to ε−t−1. They cite Davidian and Carroll (1987) who

find that using volatility instead of variance as scaling input variable gives better

variance estimates. This is due to absolute residuals (contrary to squared residuals

with variance) more closely predicting variance for non-normal distributions.

TSGARCH model The absolute value Garch model or TS-Garch model, as

named after Taylor (1986) and Schwert (1989), models the conditional standard

deviation and is intuitively specified like a normal GARCH model, but with the

absolute value of the shock term. It is specified as in (A.24).

σt = β0 + β1 |εt−1|+ β2σt−1 (A.24)

EWMA An alternative to the series of GARCH models is the exponentially

weighted moving average or EWMA model. This model calculates conditional

variance based on the shocks from previous periods. The idea is that by including

a smoothing parameter λ more weight is assigned to recent periods than distant

periods. The λ must be less than 1. It is specified as in (A.25).

σ2
t = (1− λ)

∞∑
j=1

(λjε2
t−j) (A.25)

In practice a λ of 0.94 is often used, such as by the financial risk management com-

pany RiskMetricsTM model of J.P. Morgan (Morgan Guaranty Trust Company 1996).
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MLE fitted distributions

Below in figure B.1 are the plots of the distributions fitted to the Euro Stoxx 50

data using Maximum Likelihood Estimation.
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Figure B.1: Theoretical (red) vs. Actual (black) distributions of Euro Stoxx 50

Goodness of fit

As already mentioned, next to testing the models in part 3, we also tested other

models using the different distributions. This we did in order to check if distributions

that capture the higher moment effects are really better in terms of goodness of fit.

We did a small data mining experiment with 140 models that were estimated. This

can lead to overfitting because of the fit in-sample. However, we can decide if there

is a trend using the different distributions for the several GARCH models. Thus, in

this experiment, our rule of thumb was to examine general trends. Six cases were

examined.
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First, in figure B.2, symmetric GARCH with symmetric distributions are looked at.

As you can see the general error distribution (GED) seems to perform slightly better

than the the T distribution. While the student’s t distribution (T) performs better

than the normal distribution (NORM) according to the AIC. Which is consistent

with the literature that found that the assumption of the normal distribution

is a rather poor assumption.

AIC

3.13 3.14 3.15 3.16 3.17

ARMA(0,0)+iGARCH(1,1) NORM

ARMA(0,1)+iGARCH(1,1) NORM

ARMA(1,0)+iGARCH(1,1) NORM

ARMA(1,1)+iGARCH(1,1) NORM

ARMA(0,0)+iGARCH(1,1) T

ARMA(0,1)+iGARCH(1,1) T

ARMA(1,0)+iGARCH(1,1) T

ARMA(1,1)+iGARCH(1,1) T

ARMA(0,0)+iGARCH(1,1) GED

ARMA(0,1)+iGARCH(1,1) GED

ARMA(1,0)+iGARCH(1,1) GED

ARMA(1,1)+iGARCH(1,1) GED

ARMA(0,0)+sGARCH(1,1) NORM

ARMA(0,1)+sGARCH(1,1) NORM

ARMA(1,0)+sGARCH(1,1) NORM

ARMA(1,1)+sGARCH(1,1) NORM

ARMA(0,0)+sGARCH(1,1) T

ARMA(0,1)+sGARCH(1,1) T

ARMA(1,0)+sGARCH(1,1) T

ARMA(1,1)+sGARCH(1,1) T

ARMA(0,0)+sGARCH(1,1) GED

ARMA(0,1)+sGARCH(1,1) GED

ARMA(1,0)+sGARCH(1,1) GED

ARMA(1,1)+sGARCH(1,1) GED

Type of Dist.

GED

NORM

T

Symmetric Garch Models and distributions

Figure B.2: Goodness of fit symmetric GARCH and distributions
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Second, in figure B.3, symmetric GARCH models with the best symmetric dis-

tribution (T) and other distributions (SGED, ST) are looked at. As you can see

the SGED seems to perform better than the skewed student’s t distribution (ST)

and the latter is better than the scaled T distribution. This is consistent with

Giot and Laurent (2003) that the skewed student’s t (ST) distribution outperforms

the symmetric distributions.

AIC

3.123 3.126 3.129

ARMA(0,0)+iGARCH(1,1) T

ARMA(0,1)+iGARCH(1,1) T

ARMA(1,0)+iGARCH(1,1) T

ARMA(1,1)+iGARCH(1,1) T

ARMA(0,0)+iGARCH(1,1) ST

ARMA(0,1)+iGARCH(1,1) ST

ARMA(1,0)+iGARCH(1,1) ST

ARMA(1,1)+iGARCH(1,1) ST

ARMA(0,0)+iGARCH(1,1) SGED

ARMA(0,1)+iGARCH(1,1) SGED

ARMA(1,0)+iGARCH(1,1) SGED

ARMA(1,1)+iGARCH(1,1) SGED

ARMA(0,0)+sGARCH(1,1) T

ARMA(0,1)+sGARCH(1,1) T

ARMA(1,0)+sGARCH(1,1) T

ARMA(1,1)+sGARCH(1,1) T

ARMA(0,0)+sGARCH(1,1) ST

ARMA(0,1)+sGARCH(1,1) ST

ARMA(1,0)+sGARCH(1,1) ST

ARMA(1,1)+sGARCH(1,1) ST

ARMA(0,0)+sGARCH(1,1) SGED

ARMA(0,1)+sGARCH(1,1) SGED

ARMA(1,0)+sGARCH(1,1) SGED

ARMA(1,1)+sGARCH(1,1) SGED

Type of Dist.

SGED

ST

T

Symmetric Garch Models and other distributions

Figure B.3: Goodness of fit symmetric GARCH and other distributions
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In figure B.4 you can see the same patter as in figure B.2, the student’s t distribution

performs best among the symmetric distributions.

AIC

3.08 3.09 3.10 3.11 3.12

ARMA(0,0)+eGARCH(1,1) NORM

ARMA(0,1)+eGARCH(1,1) NORM

ARMA(1,0)+eGARCH(1,1) NORM

ARMA(1,1)+eGARCH(1,1) NORM

ARMA(0,0)+eGARCH(1,1) T

ARMA(0,1)+eGARCH(1,1) T

ARMA(1,0)+eGARCH(1,1) T

ARMA(1,1)+eGARCH(1,1) T

ARMA(0,0)+eGARCH(1,1) GED

ARMA(0,1)+eGARCH(1,1) GED

ARMA(1,0)+eGARCH(1,1) GED

ARMA(1,1)+eGARCH(1,1) GED

ARMA(0,0)+gjrGARCH(1,1) NORM

ARMA(0,1)+gjrGARCH(1,1) NORM

ARMA(1,0)+gjrGARCH(1,1) NORM

ARMA(1,1)+gjrGARCH(1,1) NORM

ARMA(0,0)+gjrGARCH(1,1) T

ARMA(0,1)+gjrGARCH(1,1) T

ARMA(1,0)+gjrGARCH(1,1) T

ARMA(1,1)+gjrGARCH(1,1) T

ARMA(0,0)+gjrGARCH(1,1) GED

ARMA(0,1)+gjrGARCH(1,1) GED

ARMA(1,0)+gjrGARCH(1,1) GED

ARMA(1,1)+gjrGARCH(1,1) GED

Type of Dist.

GED

NORM

T

Asymmetric Garch Models and symmetric distributions

Figure B.4: Goodness of fit asymmetric GARCH and symmetric distributions
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Then, in figure B.5 the same patter arises as in figure B.3, the skewed student’s

t distribution again seems to be the most optimal one to use. Therefore the ST

distribution is chosen as final model for the Euro Stoxx 50 index.

AIC

3.075 3.080 3.085 3.090

ARMA(0,0)+eGARCH(1,1) T

ARMA(0,1)+eGARCH(1,1) T

ARMA(1,0)+eGARCH(1,1) T

ARMA(1,1)+eGARCH(1,1) T

ARMA(0,0)+eGARCH(1,1) ST

ARMA(0,1)+eGARCH(1,1) ST

ARMA(1,0)+eGARCH(1,1) ST

ARMA(1,1)+eGARCH(1,1) ST

ARMA(0,0)+eGARCH(1,1) SGED

ARMA(0,1)+eGARCH(1,1) SGED

ARMA(1,0)+eGARCH(1,1) SGED

ARMA(1,1)+eGARCH(1,1) SGED

ARMA(0,0)+gjrGARCH(1,1) T

ARMA(0,1)+gjrGARCH(1,1) T

ARMA(1,0)+gjrGARCH(1,1) T

ARMA(1,1)+gjrGARCH(1,1) T

ARMA(0,0)+gjrGARCH(1,1) ST

ARMA(0,1)+gjrGARCH(1,1) ST

ARMA(1,0)+gjrGARCH(1,1) ST

ARMA(1,1)+gjrGARCH(1,1) ST

ARMA(0,0)+gjrGARCH(1,1) SGED

ARMA(0,1)+gjrGARCH(1,1) SGED

ARMA(1,0)+gjrGARCH(1,1) SGED

ARMA(1,1)+gjrGARCH(1,1) SGED

Type of Dist.

SGED

ST

T

Asymmetric Garch Models and other distributions

Figure B.5: Goodness of fit asymmetric GARCH and symmetric distributions

In two additional figures the family garch models (TGARCH, NAGARCH and

AVGARCH) are examined, the same patterns were observed as above1.

1We have to note that for some models like TGARCH and AVGARCH with SGED distribution
the AIC was double of other models and therefore these models seem to work very poorly or are
misspecified.
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