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Construction of a 
quantitative macro-
economic reverse stress 
test for a simulated bank 
Reverse stress tests in the banking sector refer to the identification of the most likely scenarios which lead to a 

bank’s default. Despite the regulatory requirement of conducting these tests, no quantitative standard method is 

imposed so far. This paper aims to contribute in filling this gap by constructing a quantitative reverse stress testing 

framework which focuses on credit risk and implementing it on a simulated Belgian savings bank. In this study, 

reverse stress test scenarios are defined as combinations of macro-economic factors which result in a CET1 ratio 

below the mandatory minimum. Several statistical and financial models are employed: principal component 

analysis serves as a dimension reduction technique necessary to preserve computational tractability, an extended 

CreditMetricsTM model allows for the simulation of the credit migrations of obligors and a dynamic lag model is 

applied to predict future default probabilities of mortgage loans. Additionally, extreme value theory and copula 

functions are employed to compute the scenarios’ probability. After describing the reverse stress test’s main 

results, several important model risks and limitations of the framework are discussed.  
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Table 0.1. Overview of abbreviations 

Abbreviation In full 

AIC Akaike Information Criterion 

A-IRB Advanced Internal Ratings Based 

ADF Augmented Dickey-Fuller 

BCBS Basel Committee on Banking Supervision 

BIC Bayesian Information Criterion 

BIPRU Prudential sourcebook for Banks, Building Societies and Investment Firms 

CEBS Committee of European Banking Supervisors 

CET Common Equity Tier 

CICR Central Individual Credit Register 

CRD Capital Requirements Directive 

CRR Capital Requirements Regulation 

DSB Dirk Scheringa Beheer 

df Degrees of freedom 

EBA European Banking Authority 

ECB European Central Bank 

EFRAG European Financial Reporting Advisory Group 

EL Empirical Likelihood 

EP European Parliament 

ES Expected Shortfall 

ESRB European Systemic Risk Board 

EVT Extreme Value Theory 

F-IRB Foundation Internal Ratings Based 

FCA Financial Conduct Authority 
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FSA Financial Services Authority 

GPD Generalized Pareto Distribution 

HPI House Price Index 

i.i.d. independent and identically distributed 

IRB Internal Ratings Based 

JB Jarque-Bera 

KMV Kealhofer, McQuown, and Vasicek 

KS Kolmogorov-Smirnov 

LCR Liquidity Coverage Ratio 

LGD Loss Given Default 

ML Maximum Likelihood 

MLE Maximum Likelihood Estimator 

MRL Mean Residual Life 

NSFR Net Stable Funding Ratio 

PC Principal Component 

PCA Principal Component Analysis 

PD Probability of Default 

PRA Prudential Regulation Authority 

RST Reverse Stress Test 

RSTS Reverse Stress Test Scenario 

RW Risk Weights 

RWA Risk Weighted Assets 

STA Standard (Approach) 

S&P Standard and Poor’s 

VaR Value at Risk 
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Table 0.2. Description of symbols. 

Symbol Description 

𝐶𝑇(𝑢) Estimated copula function under 𝐻0, evaluated at value u 

𝑐𝑞,𝑗 𝑞-th coefficient of 𝑗-th principal component 

𝐶𝜃�̂�(𝑢) Empirical copula, evaluated at value u 

𝐶(. ) Cumulative copula function 

𝐶𝐸𝑇11%  1% quantile of the CET1 ratio’s distribution 

𝑑𝑖(𝑡) Number of defaults of 𝑖-rated corporations in period 𝑡  

𝑑𝑖,𝑗   Euclidean distance between reverse stress test scenario 𝑖 

and 𝑗  

𝐷𝑡𝑜𝑡𝑎𝑙 Total Euclidean distance between selection of reverse 

stress test scenarios  

𝐸𝐿 Expected Loss 

𝐸(𝑛𝑒𝑤 𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 𝑙𝑜𝑎𝑛𝑠 𝑣𝑎𝑙𝑢𝑒|𝜔) Expected value of the mortgage loans portfolio conditional 

upon a given scenario 

𝐸(𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒|𝜔) Expected value for 𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 conditional upon a given 

scenario 

𝐹(𝑦) Cumulative distribution function of unspecified type, 

evaluated at point 𝑦 

gdp Realization of Belgian Domestic Product growth in period 

𝑡 

𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ(𝑡)  Belgian Gross Domestic Product growth in period 𝑡 

𝑔𝑑𝑝𝐻, 𝑔𝑑𝑝𝐿 Higher resp. lower bound of a scenario w.r.t. its dimension 

GDP growth 
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𝐺𝜉,𝛽(𝑦) Generalized Pareto distribution, i.e. cumulative distribution 

in right tail conditional upon breaching threshold 𝑢, with 

scaling parameter 𝛽 and shape parameter 𝜉, evaluated at 

point 𝑢 + 𝑦  

𝐺(. ) Inverse cumulative distribution function 

ℎ𝑝𝑖𝐻, ℎ𝑝𝑖𝐿 Higher resp. lower bound of a scenario w.r.t. its dimension 

Δ𝐻𝑃𝐼  

𝐻0 Null-hypothesis 

𝐾, 𝑘 Maximum number of lags allowed to be included (resp. 

actually included) for 𝜖𝑡 in dynamic lag model for 

𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 

𝑘 Number of parameters required by copula function 

𝐿, 𝑙 Maximum number of lags allowed to be included (resp. 

actually included) for 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ𝑡 in dynamic lag model 

for 𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 

𝐿𝑛 Original loan value of obligor 𝑛 

𝐿𝑛,𝑑𝑒𝑓𝑎𝑢𝑙𝑡 Loan value of obligor 𝑛 after default 

𝑙𝑖 Log-likelihood function of an initially i-rated obligor 

𝑀, 𝑚 Maximum number of lags allowed to be included (resp. 

actually included) for Δ𝐻𝑃𝐼𝑡 in dynamic lag model for 

𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 

𝑚 Time to maturity 

𝑚𝑖𝑗 Unadjusted migration probability from rating 𝑖 to rating 𝑗 

𝑚𝑖𝑗,𝑎𝑑𝑗 Migration probability from rating 𝑖 to rating 𝑗, adjusted for 

rating withdrawals 
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𝑁, 𝑛 Maximum number of lags allowed to be included (resp. 

actually included) for Δ𝑈𝑁𝐸𝑀𝑃𝐿𝑡 in dynamic lag model 

for 𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 

𝑛 Dimensionality of scenarios 

𝑁𝑖(𝑡) Number of 𝑖-rated corporations in period 𝑡 

𝑁(. ) Normal cumulative distribution function 

𝑝 Number of principal components selected 

Ρ Correlation matrix 

𝑃𝑟(. ) Probability 

𝑝𝑐𝑗 Realisation of 𝑗-th principal component of the risk-free 

interest rate term structure 

𝑃𝐶𝑗 𝑗-th principal component of the risk-free interest rate term 

structure 

𝑝𝑐𝑗,𝐻 , 𝑝𝑐𝑗,𝐿  Higher resp. lower bound of a scenario w.r.t. its dimension 

𝑃𝐶𝑗 

𝑃𝐷𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 ∈ {𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡, 𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑡𝑖𝑣𝑒} 

Default probability of a corporation in a given credit rating 

category 

𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒𝑠 Default probability of the mortgage portfolio 

𝑃𝐷𝑦 Corporate default probability in year 𝑦 

𝑃𝐷𝑦,𝑄𝑖 Corporate default probability in year 𝑦, quarter 𝑖 

𝑞𝑖 Default probability of 𝑖-rated corporate obligor 

𝑅 Correlation in the RWA formula according to the IRB 

approach 

]𝑅𝑖,𝑘, 𝑅𝑖,𝑘+1] Asset return threshold to be breached to migrate from 𝑖-

rating to 𝑘-rating 

𝑅𝑊𝐴 Risk weighted assets 
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𝑅𝑊𝐴𝑐𝑎𝑠ℎ Risk weighted cash 

𝑅𝑊𝐴𝑓𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠 Risk weighted financial assets 

𝑅𝑊𝑐𝑜𝑟𝑝𝑜𝑟𝑎𝑡𝑒 Risk weight of the corporate obligor portfolio 

𝑅𝑊𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 Risk weight of the mortgage portfolio 

𝑟𝑚(𝑡) Risk-free interest rate for maturity m in period 𝑡 

𝑆 Number of observations in estimation sample in procedure 

to compute RMSPE 

𝑆𝑇 Cramér/von Mises test statistic  

𝑡 Time index 

𝑇 Total number of periods included in data sample 

𝑇𝑅𝐸𝑁𝐷𝑡 A time series representing the trend over time 

𝑢 = (𝑢1, … , 𝑢𝑛) ∈ [0,1]
𝑛 Pseudo-observations 

𝑢𝑅 , 𝑢𝐿 Threshold value in right resp. left tail of distribution 

𝑢𝑛𝑒𝑚𝑝𝑙𝐻, 𝑢𝑛𝑒𝑚𝑝𝑙𝐿 Higher resp. lower bound of a scenario w.r.t. its dimension 

Δ𝑈𝑁𝐸𝑀𝑃𝐿  

𝑉𝑎𝑅99% Value at risk at 99% confidence level 

𝑤𝑖 Withdrawal probability of an 𝑖-rated company 

𝑋𝑖,𝑀𝑎𝑥, 𝑋𝑖,𝑚𝑖𝑛 Highest (lowest) value considered for the scenarios’ 

dimension corresponding to the risk factor 𝑋𝑖 

𝑧 Realization of systematic risk factor in period 𝑡 

Z(t) Systematic risk factor in period 𝑡 

𝑧𝐻, 𝑧𝐿 Higher resp. lower bound of a scenario w.r.t. its dimension 

𝑍 

𝛼 Confidence level 

Δ𝐻𝑃𝐼(𝑡) First differences of Belgian house price index in period 𝑡 
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Δ𝑟𝑚(𝑡) First differences of risk-free interest rate for maturity 𝑚 in 

period 𝑡 

%Δ𝑟𝑚(𝑡) Relative differences of risk-free interest rate for maturity 

𝑚 in period 𝑡 

Δ𝑈𝑁𝐸𝑀𝑃𝐿(𝑡) First differences of Belgian unemployment rate in period 𝑡 

𝜖𝑡 Residual of first part of the model to predict 𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒, 

at period t 

𝜖𝑛(𝑡) Idiosyncratic risk of corporate obligor 𝑛 in period 𝑡 

𝛿𝑡 Residual of second part of the model to predict 

𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒, at period t 

𝜆𝑗 Eigenvalue of 𝑗-th principal component 

𝜇𝑖 Default probability of initially 𝑖-rated corporation 

𝜇𝑋𝑖 Sample average of risk factor 𝑋𝑖 

𝜌𝑖,𝐺𝐷𝑃 Asset return sensitivity of an initially 𝑖-rated corporation 

with regard to GDP growth 

𝜌𝑖,𝑃𝐶𝑗 Asset return sensitivity of an initially 𝑖-rated corporation 

with regard to 𝑃𝐶𝑗 

√𝜌𝑖,𝑍  Asset return sensitivity of an initially 𝑖-rated corporation 

with regard to Z 

√1 −  𝜌𝑖,𝑍  Asset return sensitivity of an initially 𝑖-rated corporation 

with regard to 𝜖 

𝜎𝑋𝑖 Standard deviation of risk factor 𝑋𝑖 

𝜙(. ) Normal density distribution 

Φ(. ) Cumulative normal density distribution 

𝜔 A certain scenario 

Note that the symbols 𝐺𝐷𝑃,𝐻𝑃𝐼, 𝑈𝑁𝐸𝑀𝑃𝐿 are sometimes used to denote the GDP growth and first 

difference in HPI and unemployment rate with the aim to simplify notation.   
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1. Introduction 

The financial crisis of 2007-2009 has proven that forecasts of banks’ potential losses made by regular 

risk measures, such as Value at Risk (VaR) and Expected Shortfall (ES), are insufficiently reliable. 

More specifically, they failed to correctly take into account the possible occurrence of extreme tail 

risks. Hence, they did not succeed in pointing out that first, preventive actions should have been 

undertaken to avoid the large unexpected losses in the banking sector, and second, which specific 

actions would have been appropriate. Consequently, supervisory authorities emphasized the 

importance of the already required regular stress tests and adopted reverse stress tests (RSTs) as a 

regulatory requirement (BCBS, 2010; CEBS, 2010; FSA, 2009, 2011).  

 

Figure 1.1. Stress Test and Reverse Stress Test.  

(Adapted from: Farid, 2016)  

The main differences between these two types of stress tests are illustrated in Figure 1.1. In the upper 

chain it is shown how regular stress tests take a given financial or economic shock1, which is based 

on expert judgement or historical events, as a starting point and proceed by assessing the potential 

impact of this scenario on the bank's health, a.o. solvability, profitability, liquidity. The lower chain 

in Figure 1.1 demonstrates that RSTs, on the other hand, start from a loss of a given magnitude, 

typically a loss that leads to a bank’s default2, and then work backwards with the aim to identify the 

scenarios which could result in a loss equal to or exceeding this threshold. However, focus lies on 

scenarios that are not only sufficiently severe, but also plausible. Therefore, the next step is to rank 

these scenarios according to their relative3 probability, allowing for the most likely scenarios to be 

uncovered.  

                                                 
1 Examples are sudden, drastic changes in global equity prices, exchange rates, oil and commodity prices, sovereign credit spreads, 

residential and commercial property prices, etc. (ESRB, 2016). 

2 Note that the chosen definition of default is important as different default definitions may result in different RSTS identifications. 
The default definition adopted in this paper is specified in Section 2.3.  

3 In Section 2.5.2, an explanation is provided as to why the methodology applied in this paper only allows for the computation of a 

scenario’s relative probability, i.e. as compared to other scenarios’ likelihood. Note that this is sufficient as the FSA does not 
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The use of RSTs has various advantages. First, similar to regular stress tests, they highlight and 

help firms understand formerly unknown vulnerabilities, hence allowing for improved risk 

management and targeted mitigating actions (EBA, 2015; FSA, 2009). Second, this approach forces 

financial institutions to anticipate and look beyond the problems they have already incurred in the 

past or that seem likely to occur. Now, they are obligated to take into account the correlation between 

tail events, which are situations that only have a small chance of happening. RSTs can overcome 

disaster myopia and avoid the misleading sense of security in case forward stress tests result in 

manageable effects (CEBS, 2010). Third, the weaknesses identified by RSTs can be considered as 

starting point for resolution plans (FSA, 2009). Lastly, RSTs do not solely rely on expert judgement 

for scenario selection. Instead, these scenarios, which are in fact combinations of relevant risk factors 

that could lead to default, are identified automatically, hence reducing the arbitrariness in the scenario 

selection (Grigat and Caccioli, 2017). 

Along with these advantages of deeper insight with regard to potential risks and solutions, the use 

of RSTs implies two key disadvantages. First, the conduct of RSTs is complex. It requires quantitative 

skills and an extensive understanding of financial markets. More specifically, appropriate RSTs need 

to be developed on an individual bank’s basis as different banks may be affected by other risk factors, 

i.e. (macro-economic) factors which influence the bank’s health and profitability. Understanding 

which risk factors need to be included in the analysis and how the risk factors relate to the bank’s 

activities and portfolios calls for profound financial and statistical knowledge. A second disadvantage 

is the computational intensity required in the case of a realistic bank portfolio. This is due to the 

inclusion of many different types of assets and liabilities, the values of which may be influenced by 

a large number of risk factors. The total set of considered factors determines the number of 

dimensions of the scenarios to be identified, since these scenarios are in fact combinations of specific 

realizations of the considered risk factors. Any increase in dimensionality leads to a combinatorial 

explosion, i.e. an exponential increase in possible combinations. Therefore, a dimension reduction 

technique is imperative and the proposed framework must be developed in such way that its 

practicality lasts when considering more complex portfolios (Grundke and Pliszka, 2017). 

  

                                                 
require institutions to assess the scenarios’ likelihood in absolute quantitative terms. It is considered sufficient to rank the identified 
scenarios instead of calculating absolute probabilities (FSA, 2011). 
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1.1. Regulation on RST 

The benefits of RSTs have drawn the attention of financial service regulators. In response to the 

collective lack of imagination that became apparent due to the financial crisis, the FSA4 pioneered in 

putting forward an RST regime. This new requirement became officially effective as from December 

14, 2010 (FSA, 2009). In this regime, banks, insurers, building societies and a number of BIPRU 

investment firms are required to implement RSTs proportionally, meaning that whereas RSTs in small 

organizations can be exclusively qualitative, larger and more complex organizations are expected to 

conduct both qualitative and quantitative RSTs (FSA, 2009). The new RST requirement is included 

in the FSA’s integrated stress testing framework5 and does not represent a replacement of the already 

existing regular (forward) stress tests, but a complement to them. Moreover, Kilavuka (2013) argues 

that a self-perpetuating process can be developed by including the principal influencing parameters 

proposed in the outcome of the RSTs as an input in forward stress tests. In policy statement 09/20 the 

FSA stresses that the RST regime is proposed as a tool to improve risk management and business 

planning and not with the aim to determine capital requirements. Also, the results of RSTs need to be 

reported and validated by senior management or the board at least annually (FCA, 2017; FSA, 2009).6  

Although the authorities oblige banks to conduct RSTs, no quantitative standard has been 

developed so far. To the question as to what quantitative analysis should be included in the 

submission, the FSA replied that quantitative analysis should be used to describe scenarios where 

appropriate and possible, but did not provide further details on which approach should be employed. 

Instead, the FSA states that no template for submission will be offered and that instead, firms are 

asked to develop their own format, tailored to their specific risk framework (FSA, 2011). The CEBS7 

(2010) provides similar statements about the lack of a standard for RST methodologies, the 

complementation of RSTs to regular stress tests, the concept of proportionality and the goal to 

represent a risk management tool rather than a method to compute capital requirements. 

                                                 
4 The FSA (Financial Services Authority) is the predecessor of the FCA (Financial Conduct Authority) and the PRA (Prudential 

Regulation Authority). It had the responsibility over the regulation of the financial services institutions in the U.K. until 2013. 
5 Appendix 1 provides a more extensive description of the inclusion of RSTs in the FSA’s integrated stress testing framework.  

6 More information on the degree of involvement required by the Board is provided in FSA FAQs (2011). 

Additionally, Takano et al. (2013) note that bank executives’ active involvement in stress testing is crucial for a successful 

implementation. It is the board’s responsibility to impose collaboration of different business divisions with the aim of diminishing 

a stress event’s effect. Consequently, stress testing would be less effective without this engagement. 
7 The CEBS (Committee of European Banking Supervisors) is the predecessor of the EBA (European Banking Authority). After its 

establishment by the European Commission in 2004 it acted as an independent advisory organization on banking supervision until 
2010.  
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1.2. Related research 

Not only is there no standard provided by the authorities, but also literature on the topic of RSTs is 

still scarce and, more specifically, only few proposals for quantitative RST methodologies have been 

formulated. Within the existing literature that covers quantitative RSTs, two domains can be 

distinguished. Whereas the first strand of literature discusses the identification of reverse stress test 

scenarios (RSTSs), the second strand focuses on the computation of the RSTSs’ probability. Even 

though both strands take a different perspective, they have to deal with one common complication: 

the computational effort driven by the portfolio’s degree of complexity. Consequently, both groups 

discuss the required application of dimension reduction techniques. 

 

Examples in the domain of RSTS identification are Skoglund and Chen (2009), Grundke (2011), 

Grundke (2012), Grundke and Pliszka (2017) and Takano et al. (2013).  

Skoglund and Chen (2009) pioneer the discussion of RSTS identification, proposing a measure 

based on the so-called Kullback information theory (Kullback, 1959) to develop a non-parametric 

method for extracting relative information of risk factors. The Kullback information measure gives 

an indication of which risk factors are important for determining profit and loss. This method is 

closely related, but superior, to the better known Euler risk contributions; whereas the latter can only 

be applied when a portfolio is simulated using a linear model, the Kullback information measure is 

also valid for non-linear simulation models. As the value of the instruments included in a portfolio is 

often a non-linear function of different risk factors, this Kullback information measure is valuable for 

RSTS identification. In the application of their theory on a sample portfolio consisting of equity 

derivatives, the relative information measure is computed for each of the underlying stocks. In other 

words, Skoglund and Chen (2009) define a scenario’s dimensions as the risk drivers that determine 

the derivatives’ value. However, no concrete explanation or example is provided as to how this theory 

can be implemented to identify RSTSs that are defined as a combination of macro-economic risk 

factor realizations. 

This first segment of the literature dealing with quantitative RSTS identification is later on 

complemented by a series of suggestions by Grundke (2011, 2012) and Grundke and Pliszka (2017). 

The main idea of Grundke (2011) is the following. Instead of computing economic capital 

requirements for different risk types separately, and subsequently aggregating these requirements, 

integrated risk management techniques need to take into account mutual dependencies of different 

risks and their corresponding losses in order to accurately calculate the appropriate total capital 
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requirements. Therefore, the authors claim that bottom-up approaches, that model how different risk 

types interact with one another on the individual risk factors and financial instruments level, serve as 

an adequate framework in order to carry out RSTs and especially, to compute the probabilities of the 

scenarios. However, two points of criticism are expressed by the authors themselves. First, bottom-

up approaches are still relatively new and for some risk types, such as operational risk, no bottom-up 

approaches exist yet that take these risks into account. Second, no back-testing analyses of bottom-

up approaches exist.  

Extensions of this framework allow to account for more realistic banking characteristics. More 

specifically, Grundke (2012) proposes six modifications to the model introduced in his earlier 

publication (Grundke, 2011). First, time-varying bank rating is incorporated. More specifically, it is 

assumed that the return on the bank’s assets influences the rating of the bank itself over the risk 

horizon. This characteristic is included in all further extensions, except for the last modification, 

which consists of a model reduction. Second, the contagion effects between the obligors are included 

in the model. The existance of these contagion effects implies that one obligor’s default probability 

is not only influenced by systematic risk factors, but also by defaults of other obligors. Third, 

systematic recovery risk is added, which implies the relation between systematic risk factors and 

obligors’ asset returns on the one hand and the obligors’ recovery rates on the other hand. Fourth, the 

impact of lagged interest rate factors on obligors’ asset returns is included. Fifth, time-varying 

sensitivities of obligors’ asset returns toward systematic risk factors are accounted for. Lastly, a model 

reduction is proposed. This simplification of the original model assumes that the corporate loans’ 

value does not change by varying rating changes, unless the obligor defaults.  

Grundke and Pliszka (2017) start from this framework and, using U.S. data, they demonstrate the 

experimental implementation of RSTs. They consider a bank portfolio containing only fixed-income 

instruments and show how principal component analysis (PCA) can be used in order to reduce the 

number of relevant risk factors. The method proposed consists of 6 steps. First, a PCA is conducted 

of the risk-free interest rate’s term structure in order to reduce the number of relevant macro-economic 

risk factors to consider. Second, a linear model of obligors’ asset returns is estimated in function of 

these risk factors. These estimates of asset returns are used in step 4. Third, the marginal probability 

distributions of the risk factors are estimated and combined in a multivariate probability distribution. 

Fourth, asset return thresholds are calibrated, such that up- and downgrades of obligors’ credit quality 

can be identified. Fifth, all scenarios are evaluated for a simplified portfolio, with assets and liabilities 

only consisting of zero-coupon bonds and deposits. Sixth, the most likely scenario which results in a 

loss exceeding the total amount of capital held, is identified.  
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Takano et al. (2013) present an enhanced firm-value model8, in which the systematic risk factors 

are extended to incorporate macro-economic factors. This approach is closely related to Grundke and 

Pliszka (2017). The latter models the asset returns in function of various macro-economic factors and 

defines an obligor’s transition from a certain credit rating grade to another by a breach of the modeled 

asset return through a pre-specified threshold. Similarly, Takano et al. (2013) model the firm-value 

in function of macro-economic factors and subsequently define an obligor’s rating grade migration 

by a breach of its firm value through a threshold. Thereafter, they continue by combining the enhanced 

firm-value with the so-called Laplace inversion method, allowing to calculate the risk measures of a 

portfolio and the risk contributions of the different assets therein and to perform RSTs. The proposed 

methodology provides a unified framework for forward and reverse stress tests, which guarantees 

consistency between the results of both stress test approaches.  

 

Having discussed the first strand of literature, it is imporant to note that RSTs do not stop after 

the identification of the scenarios which could render the financial institution’s business model 

unviable. Instead, they also try to select the most likely RSTS. Therefore, the RSTSs’ probability 

must be computed. This probability quantification is the focus of the second strand of literature. 

Considerable contributions in this respect were made by Glasserman, Kang and Kang (2012), Flood 

and Korenko (2013) and Kopeliovich, Novosyolov, Satchkov and Schachter (2015).  

In Glasserman et al. (2012), the most likely scenarios, for which confidence intervals are 

constructed, are determined via empirical likelihood (EL). Each of these scenarios has to surpass a 

predefined level of loss in portfolio value. Through randomized resampling, alternative scenarios 

resulting in extreme losses are found. An important benefit of the EL estimator is that it does not rely 

on significant assumptions about the market factors’ conditional distributions. Additionally, the shape 

of the confidence regions is flexible in capturing tail behaviour and skewness of market factors. 

However, this approach relies on a large sample size and a large loss level in order to obtain accurate 

results. The data requirements corresponding to this approach are thus a significant drawback, as in 

practice data on large losses are limited and therefore, supplementation by other methods is needed.  

Whereas Glasserman et al. (2012) identify the most likely scenario conditional on bearing a loss 

greater than a given threshold, Flood and Korenko (2013) later on look for the scenario generating 

the largest loss for any given plausibility threshold. Flood and Korenko decide to search the surface 

                                                 
8 In a firm value model the credit quality of an obligor is represented by a firm value. 
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of an ellipsoid that shows a predefined plausibility threshold, by making use of the eigenvectors of 

the covariance matrix. This method can be supplemented by a PCA in order to explain a large 

proportion of the variance. This is recommended, as the number of scenarios (or points on the 

ellipsoid) rapidly increases with the number of market risks taken into account. One point of criticism 

is that, since the method proposed by Flood and Korenko only identifies scenarios of a certain given 

level of plausibility, other combinations, which result in a similar or larger loss, are not considered.  

Kopeliovich et al. (2015) develop a new method for RSTS selection by combining a PCA of the risk 

factors with Gram-Schmidt orthogonalization. The collection of identified scenarios should satisfy 

the following criteria: first, the scenarios’ occurrence is not too unlikely. Second, they are maximally 

different from each other in some concrete sense. Third, they include the highest likelihood scenarios 

for the most important principal components (PC).  

Despite these papers’ significant theoretical contributions, Grundke and Pliszka (2017) point out 

two common drawbacks. First, these studies only consider market risk and ignore credit risk, and 

second, the approaches proposed become numerically intractable for portfolios of realistic 

complexity. Therefore, no realistic empirical implementation can be solely based on these 

approaches. 

 

Whereas the previous two strands of literature propose either theoretical or empirically 

implementable methodologies for the conduct of quantitative RSTs by a single institution (i.e. as part 

of a micro-prudential analysis), one can also conduct a RST as part of a macro-prudential analysis9. 

This perspective is taken on by recent research by Grigat and Caccioli (2017). Starting from a given 

systemic loss, the paper subsequently proceeds by reverse engineering dynamics of financial 

contagion effects to identify the scenario of smallest exogenous shocks that could result in such a 

loss. To illustrate this, Grigat and Caccioli (2017) perform an RST analysis of a system consisting of 

44 European banks, the interbank exposures of which are reconstructed by employing a so-called 

RAS algorithm. They show, first, how a ranking of banks according to their systemic importance can 

be determined by computing the distribution across banks of worst case shock sizes and, second, that 

this ranking can be employed to implement targeted capital requirement policies, which can enhance 

a system’s robustness.  

                                                 
9 Note, however, that this is not in correspondence with the FSA’s integrated stress testing framework (FSA, 2009), which stipulates 

that RSTs are part of a firms’ own stress testing, and not of the system-wide stress testing. 
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1.3. This paper’s contribution 

As mentioned previously, few proposed methodologies consider credit risk, and those that do, are not 

practically implementable when considering a more realistic bank portfolio. Furthermore, they solely 

focus on corporate obligors and omit the inclusion of residential mortgage loans in the bank’s 

portfolio. This paper’s contribution is to fill this gap in literature by proposing a quantitative RST 

methodology for a Belgian saving bank, the portfolio of which contains both corporate loans and 

residential mortgage loans. Due to the consideration of this different type of portfolio, scenarios will 

consist of realizations of additional macro-economic factors, such as the unemployment rate and the 

house price index, besides factors typically considered, e.g. GDP and interest rates. 

The remainder of this paper is subdivided in five main parts. Section 2 provides a theoretical basis 

and describes the proposed quantitative framework for RST and the employed methodologies. 

Section 3 covers an experimental implementation of the framework from Section 2. First, I describe 

the different data used, the analysis of encountered data problems and the corresponding measures 

taken to overcome them. Afterwards, I discuss the results of the experimental implementation, i.e. 

the parameter estimations of the models and the RSTSs determined. Finally, Section 4 discusses the 

framework’s limitations, which can be considered as topics for further research, and concludes.  
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2. Reverse stress testing framework 

This section first provides an overview of the overall framework proposed to identify the most 

relevant RSTSs for banks for which the main activities consist of granting corporate and residential 

mortgage loans. The concrete balance sheet considered is described in Section 2.1. The methodology 

for simulating the value of corporate loans and assigning risk weights to these loans is largely based 

on the macro-economic approach by Grundke and Pliszka (2017). For the mortgage loans, default 

probabilities (𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒) are estimated using an adjusted version of the forecasting model 

suggested by Li (2014).  

2.1. Simulated bank 

As mentioned in Section 1, RSTs need to be developed on a bank-specific basis. Therefore, a choice 

has to be made about the type of bank on which the RST is carried out. As this paper focuses on credit 

risk rather than on market risk, a savings bank is considered instead of an investment bank. This, 

combined with the choice of considering Belgian data, leads to Argenta Spaarbank, a large Belgian 

savings bank in terms of balance sheet total (Febelfin, 2016).  

Table 2.1. Stylized version of Argenta’s balance sheet 2016 (in millions EUR).  

(Adapted from: Argenta, 2016a) 

Assets   Liabilities and shareholders’ equity 

Cash 905.80   Deposits of credit institutions 1.40 

Financial assets 7,241.10   Deposits of other than credit institutions 31,615.30 

Loans and receivables 26,521.60   Debt securities including obligations 1,210.50 

Corporate loans 3,460.00   Equity 1,841.30 

Mortgage loans 23,061.60  

  

TOTAL ASSETS 34,668.50   TOTAL LIABILITIES 34,668.50 

 

Table 2.1 shows a simplified summary of Argenta Spaarbank’s balance sheet of 2016. The asset 

side consists of cash, financial assets and loans, the latter being subdivided in corporate loans 

(±13%) and mortgage backed loans (±87%). These loan portfolios are the most important asset 

types, as the focus of the RST presented in this paper is credit risk. The corporate loan portfolio is 
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assumed to consist of 346 groups of obligors, each of which represents a loan amount of €10 million. 

The obligors within each group are assumed to be subject to the same idiosyncratic risk 𝜖𝑛 (see 

Section 2.4.2). For simplicity it is assumed that the financial assets available for sale are constant and 

that all loans and deposits are contracted in euro, and thus any equity risk or currency risk is neglected. 

The liabilities side contains capital, deposits and obligations. Other components of a typical balance 

sheet (a.o. financial assets held for trading purposes, tangible fixed assets, provisions) are omitted for 

clarity and simplification. It is crucial to limit ourselves to considering a stylized portfolio, since a 

portfolio of higher complexity is influenced by a large number of risk factors, and hence requires a 

significant computational effort for the RSTS selection procedure. This is explained in more detail in 

Section 2.4.3, which discusses the dimension reduction technique.  

2.2. Overview of framework 

 

Figure 2.1. Overview of RST framework. 

Figure 2.1 represents an outline of the proposed RST framework, which consists of four major 

components. The numbers provided at the bottom of each rectangle refer to the sections that 

respectively discuss the methodology used and the results obtained for this step. First, the point at 

which the bank defaults is defined in a quantitative manner. Second, the scenarios leading to the 

bank’s default are determined. Steps 2.a – 2.d represent the different steps required by the 

CreditMetricsTM model, which simulates the credit migrations of corporate loans. In step 2.e the 

default probability of the mortgage loans portfolio is predicted using a Dynamic Lag (DL) model. 

After the parameters of the CreditMetricsTM model and the DL model are obtained, the two models 

are applied to simulate the capital ratio in step 2.f. In step 3 the probability of all scenarios for which 
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this ratio falls below the default threshold is computed. Finally, in step 4, out of the ten most likely 

RSTSs three scenarios are selected such that they are maximally different from each other. The 

purpose of this last step is to maximize the information contained in the RSTSs submitted to the 

bank’s top management; this reduces the risk of tunnel vision. Hence, it contributes to the 

achievement of RSTs’ ultimate goal, which is to provide the necessary information to impose 

preventive actions to mitigate the extreme risks. 

2.3. Default definition 

RSTSs are defined by the EBA (2015) as those scenarios that result in a pre-defined outcome, e.g. 

scenarios which cause an institution’s business model to become unviable, or which cause the bank 

to be likely to fail. However, no unique, quantitative definition of ‘failure’ or ‘default’ is provided in 

regulation. To answer the question of when one can speak of a business model failure, the FSA (2011) 

states that it may not be solely about inadequate financial resources. Additionally, the EBA (2015) 

refers to Article 32 in Directive 2014/59/EU of the European Parliament, in which again a qualitative 

approach is taken to define ‘failure’. However, as this paper adopts a quantitative approach to RST, 

a concrete quantitative definition for ‘default’ is required. Therefore, it is defined as a breach of at 

least one of the capital requirements, which are presented in Table 2.2. These requirements are 

imposed by the Capital Requirement Directives (CRD) IV package, which is a supervisory framework 

reflecting the rules on capital measurements and standards outlined in Basel II and III. The interested 

reader is referred to Appendix 2 for a more extensive description of the Basel accords.  

Table 2.2. Capital ratios and regulatory requirements.  

(Adapted from: BCBS, 2013) 

Capital 

ratio 
Computation 

Min. 

requirement 

Conservation 

buffer 

Min.require-

ment incl. 

buffer 

CET1 capital 

ratio 

Common Equity Tier 1

Risk weighted assets
 4.5% 

2.5% 

7.0% 

Tier 1 capital 

ratio 

Tier 1 capital

Risk weighted assets
 6.0% 8.5% 

Total capital 

ratio 

Total capital (Tier 1 +  Tier 2)

Risk weighted assets
 8.0% 10.5% 
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The third column of Table 2.2 specifies the minimum requirements for each ratio in 2016. 

However, additional capital conservation buffers and capital redefinitions are imposed over time10 

(column 4) and it is assumed that the bank considered in this paper wants to satisfy the fully phased-

in minimum capital requirements (column 5) already ahead of the deadline in 2019. As this study 

considers a stylized bank balance, no distinction is made in types of capital. In other words, all capital 

on the balance sheet is assumed to be CET1 capital and all capital requirements in Table 2.2 

consequently map to the same ratio. Default is then defined by a breach of the most stringent 

minimum requirement, i.e. 
𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑝𝑖𝑡𝑎𝑙

𝑅𝑊𝐴
= 10.5%.  

The risk weighted assets (RWA) is the sum of asset exposures, where each asset type is multiplied 

with its corresponding risk weight. As the asset side of our stylized balance sheets consists of cash, 

financial assets, a corporate loan portfolio and a mortgage portfolio, the RWA can be computed by 

means of Equation (1). 

𝑅𝑊𝐴 = 𝑅𝑊𝐴𝑐𝑎𝑠ℎ + 𝑅𝑊𝐴𝑓𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠 + 𝑅𝑊𝐴𝑐𝑜𝑟𝑝.𝑙𝑜𝑎𝑛𝑠 + 𝑅𝑊𝐴𝑚𝑜𝑟𝑡.𝑙𝑜𝑎𝑛𝑠 (1) 

Since 𝑡𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠 = 𝑡𝑜𝑡𝑎𝑙 𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 and the bank’s equity is assumed to be all CET1 equity, it 

holds that 𝐶𝐸𝑇1 𝑒𝑞𝑢𝑖𝑡𝑦 = 𝑡𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠 − 𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠. Consequently, the CET1 ratio is computed as 

follows:  

𝐶𝐸𝑇1 𝑟𝑎𝑡𝑖𝑜 = 
𝑡𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠 − 𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

𝑅𝑊𝐴 
 (2) 

The computation of the RWA requires the choice of one out of three different methods: the 

Standard Approach (STA), the Foundation Internal Rating Based Approach (F-IRB) or the Advanced 

Internal Rating Based Approach (A-IRB). Further explanation about these methods is provided in 

Appendix 2.  

Table 2.3. Risk weights for exposures to corporates, when STA is applied.11 

 Exposure to corporates12 Exposure to 

cash13 

Exposure to 

equity14 Credit quality step 1 2 3 4 5 6 

Risk weight 20% 50% 100% 100% 150% 150% 0% 100% 

                                                 
10 For an overview and timeline of the phasing-in arrangements of conservation buffers and the phasing out of capital instruments that 

no longer qualify as non-core Tier 1 capital or Tier 2 capital, the reader is referred to BCBS (2013). 
11 Retrieved from: Part 3, Title 2, Chapter 2, Section 2, Article 122, EP, 2013. 
12 See Part 3, Title 2, Chapter 2, Section 2, Article 122, EP, 2013. 
13 See Part 3, Title 2, Chapter 2, Section 2, Article 134.2, EP, 2013. 
14 See Part 3, Title 2, Chapter 2, Section 2, Article 133.2, EP, 2013. 
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For the corporate loans component, the cash and the financial assets, the STA will be applied. Table 

2.3 shows that, whereas this approach imposes fixed risk weights on cash and equity, corporate 

obligors are appointed different risk weights according to their credit quality. As this study relies on 

S&P credit ratings, the S&P credit rating scale is mapped to the credit quality steps of the STA 

approach. Table 2.4 describes how this mapping is executed.  

Table 2.4. Mapping of S&P credit rating scale to credit quality step.  

(Retrieved from: CEBS, 2006b) 

Credit quality step 1 1 2 3 4 5 6 

S&P credit assessment  AAA AA A BBB BB B CCC-C 

 

As the balance sheet component of mortgage loans is considerably larger, the use of the F-IRB 

approach can be rationalized15. According to this method, the risk weights of mortgage loans are 

computed by Equation (3)16,  

𝑅𝑊𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒  = (𝐿𝐺𝐷 × 𝑁(
1

√1 − 𝑅
× 𝐺(𝑃𝐷) + √

𝑅

1 − 𝑅
× 𝐺(0.999)) − 𝐿𝐺𝐷 × 𝑃𝐷) × 12.5 × 1.06 (3) 

where 𝑁(𝑥) denotes the normal cumulative distribution function of 𝑥; 𝐺(𝑧) represents the inverse 

cumulative distribution function of 𝑧; 𝑃𝐷 denotes the default probability; 𝐿𝐺𝐷 stands for the loss 

given default and 𝑅 is the coefficient of correlation, which equals 0.15 in case of residential 

mortgage loans17. 

2.4. Reverse stress test scenario determination 

2.4.1. Predicting PD for residential mortgage portfolio 

This section discusses the prediction of the default probability of the mortgage loan portfolio, which 

is required to compute the risk weight according to the F-IRB approach and the expected portfolio 

value for a given scenario. The expected loss amount of mortgage loans is computed as follows: 

𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒 ×  𝐸𝐿 = 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒 × 𝑃𝐷 × 𝐿𝐺𝐷 (4) 

                                                 
15 Internal rating models must be developed and subsequently approved by a regulatory supervisor (CEBS, 2006a). Since this procedure 

costs a considerable amount of time and money, the use of the IRB approach will only pay off for portfolios of significant size and 
low probability of default. 

16 See Part 3, Title 2, Chapter 3, Section 2, Article 154, EP, 2013. 
17 See Part 3, Title 2, Chapter 3, Section 2, Article 154.2, EP, 2013. 
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where 𝐸𝐿 denotes the expected loss percentage. The expected value of the mortgage loan portfolio 

conditional on a given scenario 𝜔 can be obtained by Equation (5) (BCBS, 2005; EP, 2013). 

𝐸(𝑛𝑒𝑤 𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 𝑙𝑜𝑎𝑛𝑠 𝑣𝑎𝑙𝑢𝑒|𝜔) = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 𝑙𝑜𝑎𝑛𝑠 𝑣𝑎𝑙𝑢𝑒 

                  × (1 − 𝐿𝐺𝐷 × 𝐸(𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒|𝜔)) 
(5) 

Whereas the exposure value of the mortgage loans portfolio is assumed to be equal to the 

corresponding component reported on the balance sheet, as suggested by Tong, Mues, Brown and 

Lyn (2016), the expected default probability given a certain scenario and the loss given default (𝐿𝐺𝐷) 

need to be set or estimated. The 𝐿𝐺𝐷 is set to 10% as this is consistent with the regulatory lower 

bound of 𝐿𝐺𝐷18 and with Argenta’s Pillar 3 report of 2016.  

Li (2014) provides an overview of different models available to generate a quantitative assessment 

of the probability of default for individual mortgage loans and mortgage portfolios, including a 

discussion of the advantages and disadvantages corresponding to each model. As the purpose is to 

assess the default rate of a loan portfolio as a whole, the most appropriate model according to Li is a 

linear regression analysis on log odds. This model estimates the log odds as a linear combination of 

the influencing factors selected and ensures that the dependent variable’s value does not outpace the 

range [0,1], which is required as it represents a probability. The general model is described by 

Equation (6).  

ln
𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒

1 − 𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒
 
= 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑘𝑋𝑘 + 𝜖 (6) 

where 𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 denotes the average default probability of mortgages in the portfolio and 

(𝑋1, … , 𝑋𝑘) denotes a vector of influencing factors considered. After optimization of the coefficients 

in Equation (6), the model can be used to predict the log odds for certain values of the independent 

variables; subsequently, the implied predicted probability of default can be deduced.  

In addition to this model, four categories of default determinants for residential mortgages are 

proposed by Li (2014), together with the empirical evidence found for every factor. Three of these 

categories, more specifically loan-, borrower- and property- specific variables, are considered as less 

relevant for this paper as their impact is averaged out in a well-diversified portfolio level study. The 

fourth category, macro-economic factors, such as unemployment rate, house price volatility and debt-

to-GDP rate, remain important in a portfolio as they are affecting each and every mortgage loan in 

                                                 
18 See Part 3, Title 2, Chapter 2, Section 3, Article 164.4, EP, 2013. 
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that portfolio. Including all macro-economic variables suggested by Li (2014) would lead to a 

considerable increase in the dimensionality of the scenarios and hence in the computational 

complexity of the framework. Instead, the variables with the most unambiguous empirical evidence 

in other literature are selected: GDP growth, unemployment and the house price index (HPI). For an 

extensive overview of previous research on the macro-economic factors’ impact on default 

probability of mortgage loans and their results, the reader is referred to Appendix 2 of Li (2014). The 

empirical results of these research studies are consistent and intuitive: GDP growth and HPI have a 

negative impact on 𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒, whereas the unemployment rate has a positive impact. 

Attention should be paid when applying Li’s suggested model as the data considered in this paper 

are time series. More specifically, the output of a linear model can only be interpreted correctly if 

both the dependent variable and all regressors are stationary. Appendix 3 discusses the concept of 

non-stationarity and spurious regression in more detail using the time series ln
𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒

1−𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 
 and 𝐻𝑃𝐼 

as an example. In Section 3.2.1 it will be shown that ln
𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 

1−𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 
 is trend-stationary. Therefore, to 

avoid spurious regression, it must be regressed on a trend term in a first model denoted by Equation 

(7). The residuals of this model will then be regressed on (stationary transformations of) the macro-

economic factors suggested by Li (2014) and lags thereof (see Equation (8)). 

ln
𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒,𝑡

1 − 𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒,𝑡
 
= 𝛽0 + 𝛽1𝑇𝑅𝐸𝑁𝐷𝑡 + 𝜖𝑡 (7) 

𝜖𝑡 = 𝛼0 + 𝛼1,1𝜖𝑡−1 +⋯+ 𝛼1,𝑘𝜖𝑡−𝑘 

+𝛼2,0𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ𝑡 + 𝛼2,1𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ𝑡−1 +⋯+ 𝛼2,𝑙𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ𝑡−𝑙 

+𝛼3,0𝛥𝐻𝑃𝐼𝑡 + 𝛼3,1𝛥𝐻𝑃𝐼𝑡−1 +⋯+ 𝛼3,𝑚𝛥𝐻𝑃𝐼𝑡−𝑚 

+𝛼4,0𝛥𝑈𝑁𝐸𝑀𝑃𝐿𝑡 + 𝛼4,1𝛥𝑈𝑁𝐸𝑀𝑃𝐿𝑡−1 +⋯+ 𝛼4,𝑛𝛥𝑈𝑁𝐸𝑀𝑃𝐿𝑡−𝑛 + 𝛿𝑡  

with 𝑘 ∈ {1,… , 4}, 𝑙 ∈ {0,… , 4}, 𝑚 ∈ {0,… , 4}, 𝑛 ∈ {0,… , 4}. 

(8) 

 

 Instead of arbitrarily choosing maximum lags (𝑘, 𝑙, 𝑚 and 𝑛 in Equation (8)) for the different 

regressors, a loop is programmed that regresses all different combinations of maximum lags. The 

following constraint is imposed: if for a certain regressor the maximum lag considered is 𝑘, then all 

lags in between 0 and 𝑘 are also included, since there is no intuitive or economical argument to 

exclude these lags from the regression. To ensure the model’s compactness, the maximum lags that 

can be included are set to 4. It is however possible that different maximum lags (𝑘, 𝑙, 𝑚, 𝑛) are 

included for ϵ, 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, Δ𝐻𝑃𝐼 and Δ𝑈𝑁𝐸𝑀𝑃𝐿. In total, 1080 (= (4 + 1)(4 + 2)(4 + 2)(4 +

2)) models are regressed and the corresponding Bayesian Information Criterion (BIC), Akaike 
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Information Criterion (AIC), R2 and adjusted R2 are saved. The 20 best models, i.e. the five best 

models according to each of the four criteria, are interactively compared.  

2.4.2. Predicting corporate obligors’ credit migrations and defaults 

The STA of Basel III imposes different risk weights for differently rated corporate obligors. 

Therefore, the credit migrations of the bank’s obligors must be modeled. Various methods are 

proposed so far: one can rely on rating agencies’ judgement for corporate ratings, or historical 

methods (e.g. Altman Z-score) or market prices methods (Merton or KMV) can be applied to estimate 

the default probability, which are subsequently mapped into rating categories. However, the aim is to 

identify scenarios, defined as combinations of macro-economic risk factor realizations, that result in 

the CET1 ratio falling below 10.5%. Hence, the method is required to model the obligors’ credit 

quality as a function of these risk factors.  

 Grundke and Pliszka (2017) propose to model rating migrations and defaults of individual 

obligors by applying an extended version of the CreditMetricsTM model, introduced by J.P. Morgan 

in 1997. There is one main difference between this CreditMetricsTM model and other well-known 

credit risk models, such as Vasicek’s model or the Credit Risk Plus model; whereas these other 

models estimate the PD distribution and specific thresholds within these distributions, the 

CreditMetricsTM model instead estimates the asset return of an obligor 𝑛 with credit rating 𝑖 at time 𝑡 

using Equation (9) (Hull, 2012).  

𝑅𝑛,𝑖(𝑡) = √𝜌𝑖,𝑍 × 𝑍(𝑡)  + 𝜌𝑖,𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ × 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ(𝑡)  + ∑𝜌𝑖,𝑃𝐶𝑗 × 𝑃𝐶𝑗(𝑡)

𝑝

𝑗=1

 

(9) 

 
 
+ √1 − 𝜌𝑖,𝑍 × 𝜖𝑛(𝑡) 

where 𝑍(𝑡) denotes an i.i.d. standard normal random variable, representing unobservable systematic 

credit risk, independent from all other macro-economic risk factors; 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ(𝑡) denotes the 

growth in GDP; 𝑃𝐶𝑗(𝑡) is 𝑗-th principal component of the term structure of risk-free interest rates19 

and 𝜖𝑛(𝑡) denotes an i.i.d. standard normal random variable, representing idiosyncratic risk of obligor 

𝑛; √𝜌𝑖,𝑍, 𝜌𝑖,𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, 𝜌𝑖,𝑃𝐶𝑗 , √1 − 𝜌𝑖,𝑍 denote the risk factor sensitivities with regard to respectively 

the unobservable systematic risk factor, GDP growth, the 𝑗-th principal component and the 

idiosyncratic risk.  

                                                 
19 The computation and the reason for the use of principal components is explained in more detail in Section 2.4.3. 
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A number of studies, among which Rösch and Scheule (2007), Dunbar (2012) and Jakubik (2014), 

have already preceded this paper in the inclusion of the unobservable systematic credit risk, 𝑍(𝑡), 

which stems from the conviction of numerous researchers (see Schwaab, Koopman and Lucas (2014, 

2016) and references therein) that observable macro-economic factors and the idiosyncratic risk 

factor do not satisfy in explaining the obligors’ asset return. The resulting model, given by Equation 

(9), can be regarded as an extended version of the one-factor model, which is often used when 

modeling credit quality (ECB, 2007; Hamerle, Dartsch, Jobst, Plank, 2011; Mager and Schmieder, 

2009). The assumption that 𝑍(𝑡) and 𝜖(𝑡) are standard normally distributed is widely used in these 

previous studies. Note, furthermore, that this model is similar to the well-known Merton model 

(1974). The main difference is that the CreditMetricsTM model allows for rating changes in addition 

to defaults (Gupton, Finger and Bhatia, 1997).  

Other macro-economic factors, such as consumer price indices, could be included in Equation 

(9). However, as Section 2.4.3 explains, this would considerably reduce the computational tractability 

of the model and therefore this study opts to follow the assumption of Grundke and Pliszka (2017) 

that the factors above are most important in explaining the obligors’ asset returns.  

Under the assumption that the risk factor sensitivities in Equation (9) may differ per obligors’ 

initial rating 𝑖 (with 𝑖  {𝐴𝐴𝐴, … , 𝐶 − 𝐶𝐶𝐶}), they can be estimated by maximizing the rating-specific 

log-likelihood, denoted by Equation (10).  

𝑙𝑖 = ∑ln
√1 − 𝜌𝑖,𝑍

√𝜌𝑖,𝑍
 
𝜙(𝑧𝑡ℎ𝑟𝑒𝑠ℎ)

𝜙(Φ−1(𝜇𝑖(𝑡))

𝑇

𝑡=1

 (10) 

with  𝑧𝑡ℎ𝑟𝑒𝑠ℎ = 
𝑅𝑖,8 − 𝜌𝑖,𝐺𝐷𝑃𝐺𝐷𝑃(𝑡) − ∑ 𝜌𝑖,𝑃𝐶𝑗𝑝𝑐𝑗(𝑡)

𝑝
𝑗=1 −Φ−1(𝜇𝑖)√1 − 𝜌𝑖,𝑍

√𝜌𝑖,𝑍
  

where 𝜇𝑖 denotes the default probability of an obligor with initial credit rating 𝑖.  

Due to unavailable data, this equation differs from the binomial log-likelihood used in Grundke 

and Pliszka (2017)20 and is instead based on Demey, Jouanin, Roget and Roncalli (2004). A number 

                                                 
20 Note that Grundke and Pliszka (2017) consider a log-likelihood function 𝑙𝑖 with binomial shape: 

𝑙𝑖 = ∑ln∫ (
𝑁𝑖(𝑡)

𝑑𝑖(𝑡)
) × 𝑞𝑖 (𝑧, 𝛥 𝑙𝑜𝑔(𝑔𝑑𝑝) , 𝑐1(𝑡),… , 𝑐𝑝(𝑡))

𝑑𝑖(𝑡)

× (1 − 𝑞𝑖 (𝑧, 𝛥 𝑙𝑜𝑔(𝑔𝑑𝑝) , 𝑐1(𝑡),… , 𝑐𝑝(𝑡)))
𝑁𝑖(𝑡)− 𝑑𝑖(𝑡)∞

−∞

𝑇

𝑡=1

× 𝜙(𝑧)𝑑𝑧 
where 𝑁𝑖(𝑡) and 𝑑𝑖(𝑡) are the number of corporations and the number of defaults in rating category 𝑖 at time 𝑡. Time series of these 

variables are however not publically available for Belgium or Europe. The asymptotic MLE serves as an approximating alternative 

in case the number of obligors in a rating category is large, while requiring only time series of PD data for each rating category, 

instead of 𝑁𝑖(𝑡) and 𝑑𝑖(𝑡).  



  

25 

of adjustments had to be made to the estimator suggested by the latter study. Appendix 4 provides a 

description of the differences between Equation (10) and the estimator proposed by Demey et al. 

(2004), together with the mathematical proof of equivalence of Equation (10) and the binomial log-

likelihood used by Grundke and Pliszka (2017). As this proof relies on the assumption that 𝑁𝑖 is large 

for all 𝑖, credit ratings AAA-BBB (respectively BB – C) are pooled into credit category ‘investment 

grade’ (respectively ‘speculative grade’). Historical default and migration probabilities for these 

pools are computed as the weighted averages of the individual credit ratings’ default and migration 

probabilities (see Appendix 9). Note that this is similar to the approach of Grundke and Pliszka (2017) 

in the sense that they also abandon the idea of investigating every single credit rating separately and 

instead use default data of larger groups that represent investment respectively speculative grade 

corporations.  

Once the risk factor sensitivities are estimated, a credit migration of an initially 𝑖-rated obligor 𝑛 

to rating 𝑘 (with 𝑘 ∈ {𝐴𝐴𝐴,… , 𝐶𝐶𝐶 − 𝐶}) or a default (denoted by 𝐷) can be modeled by his asset 

return 𝑅𝑛,𝑖(𝑡) falling within the range ]𝑅𝑖,𝑘, 𝑅𝑖,𝑘+1]. Consider the migration matrix in Table 2.5, the 

numbers of which denote the probability that a company with rating 𝑖, represented by a row name, 

migrates to a rating 𝑗, represented by a column name. The diagonal displays the probabilities of a 

company remaining in the same rating category. All numbers below (resp. above) the diagonal 

describe the likelihood of an upgrade (respectively downgrade) in rating. 

Table 2.5. Average one-year migration matrix European companies 1981-2016.  

(Retrieved from: S&P, 2016) 

 
AAA AA A BBB BB B CCC-C Default 

AAA 0.8714 0.1177 0.0065 0.0022 0 0 0.0022 0 

AA 0.0030 0.8827 0.1083 0.0060 0 0 0 0 

A 0.0001 0.0202 0.9131 0.0640 0.0020 0.0001 0 0.0004 

BBB 0 0.0011 0.0461 0.9050 0.0421 0.0040 0.0011 0.0009 

BB 0 0 0.0010 0.0603 0.8409 0.0883 0.0047 0.0047 

B 0 0 0.0005 0.0043 0.0781 0.8361 0.0513 0.0297 

CCC-C 0 0 0 0 0 0.1676 0.5079 0.3246 

The data are adjusted for rating withdrawals as follows: 𝑚𝑖𝑗,𝑎𝑑𝑗 =
𝑚𝑖𝑗

1−𝑤𝑖
 where 𝑚𝑖𝑗 is the unadjusted 

migration probability from rating 𝑖 to 𝑗 and 𝑤𝑖  is the withdrawal probability of an 𝑖-rated company 

(Moody’s, 2005).  
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Figure 2.2. Asset return thresholds for BBB-rated obligor 

under assumption of standard normal asset returns. 

Figure 2.2 presents the same information as the fourth row in Table 2.5 if one assumes that first, a 

rating migration can be represented by a breach of the obligor’s asset return through a certain 

threshold, and second, that the asset returns are standard normally distributed. In spite of this second 

assumption being a simplification (see later in this section), this example can nevertheless be useful 

purely to explain how the thresholds, denoted by the vertical lines in Figure 2.2, are computed.  

Consider the asset return threshold which needs to be breached by a BBB rated company in order 

to default. The fourth row in Table 2.5 describes that the probability of such an event equals 0.09%. 

Hence, the probability of breaching the threshold corresponding to a default, must be 0.09% as well. 

As the asset return distribution is assumed to be normal, one can now compute the threshold as the 

inverse of the cumulative standard normal distribution at percentile 0.09%. Equivalently, Table 2.5 

shows that the probability of breaching the asset return threshold corresponding to a migration to a 

CCC-C rating, without breaching the default threshold, must be 0.11%. Thus, the according threshold 

must be the quantile corresponding to percentile 0.20% (=0.09% + 0.11%). Applying this reasoning 

for every rate migration of an initially BBB rated company results in the thresholds denoted in Figure 

2.2. 
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However, this assumption of standard normally distributed asset returns is not necessarily correct, 

as the macro-economic risk factors in Equation (9) are not necessarily normally distributed. One must 

instead consider the empirical inverse distribution, which can be obtained by a Monte Carlo 

simulation in which a large number of samples from the multivariate probability distribution of 

𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, 𝑃𝐶1, … , 𝑃𝐶𝑝 are drawn and the asset return is subsequently computed using Equation 

(9). The method to obtain this multivariate probability distribution of 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, 𝑃𝐶1, … , 𝑃𝐶𝑝 is 

described in Section 2.5.  

2.4.3. PCA as a dimension reduction technique 

As briefly stated in the previous section, PCs of the term structure of risk-free interest rates are 

included in the CreditMetricsTM model instead of the risk-free interest rates themselves. This section 

explains what principal component analysis (PCA) is and its importance in this paper’s analysis.  

Principal component analysis is a statistical technique that applies an orthogonal transformation 

to turn a dataset of observations consisting of correlated variables into a set of linearly uncorrelated 

variables, the so-called ‘principal components’ (PCs). The transformation ensures that the first PC 

accounts for as much variability of the given data set as possible. Next, other PCs are created, all 

capturing as much of the remaining variance of the original variables as possible, while additionally 

satisfying the constraint that they are orthogonal to the previously created PCs. Importantly, the 

number of resulting PCs is lower than the number of original variables in the dataset. This feature 

allows to apply PCA as a dimension reduction technique.  

The computational intensiveness of the scenario selection procedure in RSTs increases with the 

number of risk factors considered. More specifically, for 𝑛 risk factors, the scenarios that need to be 

identified in the inversion problem and for which the corresponding probability needs to be computed 

are also of dimensionality 𝑛. Realistic portfolios, consisting of many different types of assets and 

instruments, are influenced by many different risk factors. Hence, it is important that the RST 

framework is established in such a way that it remains numerically tractable for an increasing number 

of risk factors (Grundke and Pliszka, 2017).  

In this paper, PCA is employed in order to reduce the number of risk factors while capturing as 

much variance from the interest rates’ term structure as possible. A number of rules of thumb have 

been proposed for selecting the number of PCs to retain. First, the Kaiser-Guttman rule (suggested 

by Guttman (1954), and adjusted by Kaiser (1960, 1961)) suggests to retain all PCs with eigenvalues 
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larger than 121. Second, the scree plot, which is a plot of the PC’s eigenvalues from largest to smallest, 

can be examined and the appropriate number of PCs is determined as the point where the plot reaches 

an “elbow” and after which the eigenvalues become very small. Third, PCs are added until a certain 

percentage of the total variance is explained, typically 80%.  

The 𝑗-th principal component is computed by: 𝑃𝐶𝑗 = ∑ 𝑐𝑗,𝑞 × 𝛥𝑟𝑇𝑞
𝑚
𝑞=1 , where 𝑐𝑗,𝑞 , 𝑗 ∈ {1, … ,𝑚} 

denotes the 𝑗-th PC’s coefficients with respect to the yield-to-maturity change with maturity 𝑇𝑞, 

denoted by 𝛥𝑟𝑇𝑞. Due to the orthogonality, the yield-to-maturity changes can be expressed as function 

of the principal components as follows: 𝛥𝑟𝑇𝑞 = ∑ 𝑐𝑞,𝑗 × 𝑃𝐶𝑗
𝑚
𝑗=1  ≈ ∑ 𝑐𝑞,𝑗 × 𝑃𝐶𝑗

𝑝
𝑗=1 , where 𝑝 denotes 

the number of PCs retained. Consequently, approximate values of the original variables can be 

computed from the PCs’ values, which will be part of the scenarios’ definitions. Therefore, almost 

no information is lost, even though significantly fewer variables are included in Equation (9).  

2.4.4. Setting LGD for corporate loans portfolio 

When an obligor’s asset return falls below 𝑅𝑖,𝐶𝐶𝐶−𝐶, then the obligor is said to be in default. 

Consequently, the bank can no longer expect to collect a full repayment of the corporate loan. 

Whereas Grundke and Pliszka (2017) model the LGD using a beta distribution, I instead apply the 

STA approach consistently and thus adopt a fixed LGD of 75%22. Hence, the new value of the loan 

of a defaulted group of obligors 𝑛 (with 𝑛 ∈ {1,… ,346}) is computed by 𝐿𝑛,𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 𝐿𝑛 ×

(1 − 𝐿𝐺𝐷) = 0.25 × 𝐿𝑛, where 𝐿𝑛 denotes the original loan value of obligor group 𝑛. 

2.4.5. Calculating value of liability side 

The bank’s liability side consists of deposits of credit institutions, other deposits, and obligations. 

Following Grundke (2011) and Grundke and Pliszka (2017), it is assumed that the bank remains in 

its initial rating grade until its default; this is in correspondence with the assumption that the bank’s 

failure is sudden and unexpected. In addition, the possibility of refinancing is not considered. In other 

words, whichever scenario, the value of the liabilities can be read from the initial balance sheet.  

  

                                                 
21 The trace of a correlation matrix equals ∑ 𝜆𝑗

𝑝
𝑗=1 = 𝑝, with 𝜆𝑗  the eigenvalue of 𝑃𝐶𝑗 and p the total number of PCs.. The average 

proportion of variance explained by one PC equals 
1

𝑝
. Hence, when a PC’s eigenvalue 𝜆𝑗  is larger than 1, the proportion of variance 

explained by the j-th PC, denoted by 
𝜆𝑗

𝑝
 , is above average.  

22 See Part 3, Title 2, Chapter 3, Section 4, Article 161, EP, 2013. 
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2.4.6. Capital ratio simulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Scenario definition in case only three dimensions are considered. 

Figure 2.3 shows how scenarios are defined, each for which all balance sheet components and 

risk weights have to be simulated and included in Equation (2). Whereas the actual scenarios consist 

of 6 dimensions (𝑍, 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, 𝑃𝐶1, 𝑃𝐶2, Δ𝐻𝑃𝐼, Δ𝑈𝑁𝐸𝑀𝑃𝐿), only 3 risk factors can be visualized 

in a figure. The idea remains nevertheless the same for more dimensions. Instead of only considering 

historical values of each macro-economic risk factor, eight values within the range [𝜇𝑋𝑖 − 4𝜎𝑋𝑖 , 𝜇𝑋𝑖 +

4𝜎𝑋𝑖]
23 are generated for each variable 𝑋𝑖, and combined with every combination of the values of the 

                                                 
23 This range is expected to include 99.99% of all possible observations of a normally distributed variable. Considering a wide range 

is important as the identified RSTSs are expected to comprise extreme values for at least some of their dimensions. Although 

considering an even larger range would result in the identification of a larger number of RSTSs, all additional RSTSs would have 
a considerably lower probability of occurrence. 

X
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(𝑋1, 𝑀𝑖𝑛, 𝑋2, 𝑀𝑎𝑥, 𝑋3, 𝑀𝑖𝑛) 

(𝑋1, 𝑀𝑖𝑛, 𝑋2, 𝑀𝑖𝑛, 𝑋3, 𝑀𝑎𝑥) 

(𝑋1, 𝑀𝑎𝑥, 𝑋2, 𝑀𝑖𝑛, 𝑋3, 𝑀𝑖𝑛) 

(𝑋1, 𝑀𝑖𝑛, 𝑋2, 𝑀𝑖𝑛, 𝑋3, 𝑀𝑖𝑛) 
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remaining five risk factors, resulting in 86 = 262144 scenarios24. One such scenario in the 3-

dimensional case is presented by the red cube in Figure 2.3. The choice to consider cubes, i.e. intervals 

of realizations, instead of simple vectors (which would be presented by a dot in Figure 2.3) stems 

from the fact that the risk factors are continuous variables, and thus the probability of occurrence 

would otherwise be zero for every scenario. Even though the upper and lower bounds are important 

for the probability computation (see Section 2.5), the scenarios are defined by the vector that describes 

the scenario’s center point. 

For each scenario 𝜔, the values (𝑧𝜔, 𝑔𝑑𝑝𝜔 , 𝑝𝑐1,𝜔, 𝑝𝑐2,𝜔, Δℎ𝑝𝑖𝜔 , Δ𝑢𝑛𝑒𝑚𝑝𝑙𝜔) are inserted in the 

models described in Sections 2.4.1-2.4.5. The attentive reader will observe that some variability is 

still incorporated in the computation of the CET1 ratio through inclusion of a random idiosyncratic 

risk factor, 𝜖𝑛, in the model that predicts the obligors’ credit migration (see Section 2.4.2). A Monte 

Carlo simulation, with 100 repetitions, is executed. In each of these 100 repetitions the credit 

migration of each of the 346 groups of obligors is simulated.25 Within each group it is assumed that 

the obligors are exposed to the same idiosyncratic risk, hence obtain the same asset return in a given 

scenario and consequently undergo the same credit migration. Once the new ratings are known for 

all 346 groups, the corresponding risk weights are assigned and the CET1 ratio can be computed. 

Having obtained the 100 observations of the CET1 ratio for a given scenario, one can draw a 

distribution of the CET1 ratio, of which the 1%-quantile, denoted by CET11% is subsequently 

extracted. Note that the difference between CET11% and the current CET1 ratio can be considered as 

the absolute VaR99%.26 If CET11% < 10.5%, the corresponding scenario is identified as a RSTS and 

should consequently be saved in order to compute its probability.  

2.5. Calculating likelihood of the selected scenarios 

After having determined all scenarios for which CET11% breaches the lower bound of 10.5%, the 

most probable scenarios among them have to be identified. As the scenarios are defined as 

combinations of various risk factor realizations, their respective probabilities can be calculated by 

analyzing a multivariate probability distribution. The following sections first discuss the marginal 

distributions of the macro-economic factors, followed by a discussion about the need for a copula 

                                                 
24 Note that the number of scenarios equals (𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑝𝑒𝑟 𝑟𝑖𝑠𝑘 𝑓𝑎𝑐𝑡𝑜𝑟)6 . Considering 9 values instead 

of only 8 would lead to more than a doubling of the number of scenarios.  

25 Although a larger number of groups than 346 can be chosen, this considerable increases computation time. The reason is that for 

each group the asset returns need to be predicted and the according credit migration needs to be simulated. This must be executed 
100 times for each of the 262144 scenarios considered. 

26𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑉𝑎𝑅99%(𝑙𝑜𝑠𝑠) > 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐶𝐸𝑇1 − 10.5% ⇔ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐶𝐸𝑇1 − 𝑞1%(𝐶𝐸𝑇1) > 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐶𝐸𝑇1 − 10.5% ⇔
𝑞1%(𝐶𝐸𝑇1) < 10.5% .  
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function to combine these marginal distributions into a multivariate distribution. Note that, besides 

the multivariate distribution of the stationary transformations of all macro-economic variables, 

𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, 𝑃𝐶1, 𝑃𝐶2, Δ𝐻𝑃𝐼 and Δ𝑈𝑁𝐸𝑀𝑃𝐿, an additional multivariate distribution for 

𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, 𝑃𝐶1 and 𝑃𝐶2 is required in order to draw meaningful samples with the aim to compute 

the empirical asset return distribution (see Section 2.4.2). 

2.5.1. Marginal distribution functions  

All macro-economic variables follow a certain empirical marginal probability function, which is 

approximated by a parametric distribution. For each macro-economic factor two goodness-of-fit tests, 

the Jarque-Bera test and the Kolmogorov-Smirnov test, are conducted to check whether the 

distribution can be assumed normal. If this assumption is rejected and the problem lies in the 

distribution’s tails, extreme value theory (EVT) suggests that a generalized pareto distribution (GPD) 

constitutes a good alternative. The key result of EVT, proven by Gnedenko (1943), is that the tails of 

many distributions converge to a GPD. Consider the right tail and a threshold 𝑢 which denotes a 

certain cutoff point deep into the right tail. Then Equation (11) defines the cumulative distribution in 

the right tail conditional upon breaching the threshold 𝑢 (Hull, 2012; McNeil et al., 2005), 

𝐹𝑢(𝑦) = 𝑃(𝑢 < 𝑥 ≤ 𝑦 + 𝑢 |𝑥 > 𝑢) =
𝐹(𝑢 + 𝑦) − 𝐹(𝑢)

1 − 𝐹(𝑢)
= 𝐺𝜉,𝛽(𝑦) = 

1 − (1 + 𝜉
𝑦

𝛽
)
−
1
𝜉
 𝜉 ≠ 0 

(11) 

1 − exp (−
𝑦

𝛽
)  𝜉 = 0 

with 𝛽 the scaling parameter and 𝜉 the shape parameter that determines the heaviness of the tails.  

In order to fit the left tail of the distribution, the same approach can be adopted after changing the 

sign of x, i.e. by working with –x instead. Note that Equation (11) denotes the cumulative probability 

distribution conditional on exceeding the threshold 𝑢. The unconditional distribution, in case 𝜉 ≠ 0, 

is provided by Equation (12). 

𝐹(𝑦) = 

Φ(𝑢𝐿) (1 + 𝜉
|𝑦 − 𝑢𝐿|

𝛽
)

−
1
𝜉
 

 𝑦 < 𝑢𝐿 

(12) Φ(𝑦) 𝑢𝐿 ≤ 𝑦 ≤ 𝑢𝑅 

1 − (1 − Φ(𝑢𝑅)) (1 + 𝜉
𝑦 − 𝑢𝑅

𝛽
)

−
1
𝜉

 𝑢𝑅 < 𝑦 
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where 𝑢𝐿 (resp. 𝑢𝑅) denotes the threshold in the left (resp. right) tail and where the first (resp. third) 

component of the equation is only included in case the left (resp. right) tail is modeled by a GPD.27  

Before estimating the parameters 𝛽 and 𝜉, the threshold value 𝑢 must be chosen. Although fixed 

rules of thumb are frequently used in practice, such as the 10% rule of DuMouchel (1983) or the rule 

to set 𝑢 equal to the 95th percentile (Hull, 2012), they are not applied here since they are not supported 

by theory (Bommier , 2014; MacDonald and Scarrott, 2012). Instead, the mean residual life (MRL) 

plots, first introduced by Davison & Smith (1990), are analyzed. An MRL plot shows the mean 

excesses conditional on exceeding a threshold 𝑢, denoted by 𝐸(𝑋 − 𝑢 |𝑋 > 𝑢), as a function of 𝑢. 

To determine a correct value for 𝑢 one can use the threshold stability property of the GPD, which 

states that if a GPD model with parameters 𝜉 and 𝛽𝑢0 is valid for excesses over a threshold 𝑢0, then 

a GPD model with the same shape parameter 𝜉, but shifted scale parameter 𝛽 + 𝜉(𝑢 − 𝑢0) is valid 

for excesses over all thresholds 𝑢 >  𝑢0.28 In other words, for all 𝑢 >  𝑢0 it holds that 𝐸(𝑋 − 𝑢 |𝑋 >

𝑢) =
𝛽𝑢

1−𝜉
=

𝛽𝑢0+𝜉𝑢

1−𝜉
 , which is a linear function of 𝑢. A valid threshold 𝑢 can consequently be found 

by searching for the first threshold after which the MRL plot becomes linear (Fawcett, 2012).  

Once a value for 𝑢 is selected, the GPD’s parameters 𝛽 and 𝜉 can be estimated. Although several 

methods are proposed, the MLE is applied as it is widely used and considered as the most accepted 

method (see Bommier, 2014 and references therein).  

2.5.2. Copulas to obtain the multivariate distribution function 

After obtaining the parametrical marginal distributions for 𝑍, 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, 𝑃𝐶1, … , 𝑃𝐶𝑝, Δ𝐻𝑃𝐼 and 

Δ𝑈𝑁𝐸𝑀𝑃𝐿, these should be combined into a multivariate distribution function. Simply multiplying 

each marginal distribution is incorrect, as the assumption of independency implied by this 

computation is highly unlikely in the case of macro-economic risk factors. Instead, this paper adopts 

the use of copulas in order to incorporate the dependence of the different variables when constructing 

the multivariate distribution for 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, 𝑃𝐶1, … , 𝑃𝐶𝑝, Δ𝐻𝑃𝐼 and Δ𝑈𝑁𝐸𝑀𝑃𝐿. This distribution 

is subsequently multiplied by 𝐹1(𝑍), the marginal distribution function of the unobservable 

systematic risk factor 𝑍, since the latter is assumed independent from the other variables. 

                                                 
27 Equation (12) is a generalized version of Equations 4.3-4.5 of Grundke and Pliszka (2017). 

28 For a more detailed explanation, see MacDonald and Scarrott (2012) and Bommier (2014). 
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Sklar’s theorem (1959) guarantees that every multivariate distribution of a random vector 

(𝑋1, … , 𝑋𝑛) with 𝑛ℕ can be expressed in terms of its marginal distributions 𝐹𝑖(𝑥) = Pr (𝑋𝑖 ≤ 𝑥) 

and a copula 𝐶: [0,1]𝑛 → [0,1] such that it holds for all 𝑥1, … , 𝑥𝑛 ∈ ℝ that 

 𝑃𝑟(𝐹1(𝑋1) ≤ 𝐹1(𝑥1), … , 𝐹𝑛(𝑋𝑛) ≤ 𝐹𝑛(𝑥𝑛)) = 𝐹(𝑥1, … , 𝑥𝑛) = 𝐶(𝐹1(𝑥1), … , 𝐹𝑛(𝑥𝑛))  

As described above, a copula function is a mapping of the unit hypercube into the unit interval. 

The original data must therefore be transformed into data within the range [0,1]𝑛. More specifically, 

applied on this paper’s data, the computation of the joint distribution involves the following steps 

(Hull, 2012):  

1. First, the original variables with marginal distributions 𝐹2(𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ), 𝐹3(𝑃𝐶1), 𝐹4(𝑃𝐶2), 

𝐹5(Δ𝐻𝑃𝐼), 𝐹6(Δ𝑈𝑁𝐸𝑀𝑃𝐿) are mapped onto variables (𝐴, 𝐵, 𝐶, 𝐷, 𝐸) with marginal 

distribution functions 𝐺2(𝐴), 𝐺3(𝐵), 𝐺4(𝐶), 𝐺5(𝐷) and 𝐺6(𝐸) such that 𝐹2(𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ) =

𝐺2(𝐴), 𝐹3(𝑃𝐶1) = 𝐺3(𝐵), 𝐹4(𝑃𝐶2) = 𝐺4(𝐶), 𝐹5(Δ𝐻𝑃𝐼) = 𝐺5(𝐷), 𝐹6(Δ𝑈𝑁𝐸𝑀𝑃𝐿) = 𝐺6(𝐸). 

Whereas the Gaussian copula assumes that 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 are multivariate normally distributed, 

the t-copula assumes a multivariate t-distribution.29  

2. Second, the parameters of the copula are estimated, which imply a certain correlation structure 

between A, B, C, D and E such that (𝐺2(𝐴), 𝐺3(𝐵), 𝐺4(𝐶), 𝐺5(𝐷), 𝐺6(𝐸)) can be translated 

to 𝐺(𝐴, 𝐵, 𝐶, 𝐷, 𝐸).  

3. Third, the function 𝐺(𝐴, 𝐵, 𝐶, 𝐷, 𝐸) is mapped onto a multivariate distribution of the originally 

considered variables, 𝐹(𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, 𝑃𝐶1, 𝑃𝐶2, Δ𝐻𝑃𝐼, Δ𝑈𝑁𝐸𝑀𝑃𝐿).  

 

A number of well-known copula functions that define a correlation structure between the original 

variables are the Gaussian copula, the t-copula, the Clayton copula, the Frank copula and the Gumbel 

copula.30 The concrete copulas considered in this paper are the Gaussian copula and the t-copula. 

Whereas goodness-of-fit-tests have also been conducted on the Clayton, Frank and Gumbel copula, 

these alternatives are not explained in further detail and no results thereof are presented. The reason 

is that they do not allow for a correct interpretation in case of a dimension higher than two in 

combination with negative dependence between the variables (Yan, 2007, p.4), which was exactly 

                                                 
29 Note that this assumption is made for the marginal distributions of 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 and not for the original variables. This is exactly the 

main advantage of copula functions: the marginal distribution functions of the original variables can be preserved while defining 
the correlation structure between them. 

30 The Clayton-, Frank- and Gumbel copula are three examples of the family of Archimedean copulas, which are popular due to 

possibility to model dependence in high dimensions with a single parameter. Moreover, these four copulas can be described by an 
explicit formula, whereas this is impossible for the Gaussian copula.  
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the case in this study’s data (see Appendix 5). This paper follows the choice of Grundke and Pliszka 

(2017) to limit the degrees of freedom of the t-copula to at most 5, as any higher value for the degrees 

of freedom is considered to result in a t-copula resembling the Gaussian copula. Hence, in total 5 

different copula function fits are compared: the Gaussian copula and the t-copula with 𝑑𝑓 =

{2,3,4,5}. Appendix 6 provides a brief description of these copula types. As an in-depth discussion 

of the Gaussian and t-copula is considered outside the scope of this paper, the interested reader is 

referred to McNeil et al. (2005), Žežula (2009) and Demarta and McNeil (2004) for more extensive 

and technical descriptions.  

Each of these alternatives is fitted to the data and subsequently evaluated using the Cramér/von 

Mises test statistic 𝑆𝑇, which is computed as follows:  

𝑆𝑇 = 𝑇 ∫ (𝐶𝑇(𝑢) − 𝐶𝜃�̂�(𝑢))
2
𝑑𝐶𝑇

[0,1]𝑛

 

with 𝐶𝑇(𝑢) denoting the estimated copula function under the 𝐻0, and 𝐶𝜃�̂�(𝑢) the empirical copula. 

Although many goodness-of-fit measures for copulas are proposed, this test statistic is known as 

delivering more reliable results (Genest, Quessy and Rémillard, 2006; Grundke and Pliszka, 2017). 

When the copula function under the 𝐻0 is significantly different from the empirical copula, 

𝑆𝑇 becomes large and the assumption that the copula fits the data will consequently be rejected. Since 

the probability distribution of 𝑆𝑇 under the 𝐻0 is unknown, bootstrapping is required.  

As goodness-of-fit tests only answer the question whether a certain model is acceptable to fit the 

data, another criterion is required to also consider a model’s simplicity and to compare the different 

models. The criteria applied by Grundke and Pliszka (2017) are the Maximum Likelihood (ML), the 

AIC and the BIC, where the latter two are calculated by Equations (13) and (14), in which 𝑘 denotes 

the number of parameters required by the copula function and 𝑇 denotes the sample size. 

𝐴𝐼𝐶 = −2 ×𝑀𝐿 + 2 × 𝑘 (13) 

𝐵𝐼𝐶 = −2 ×𝑀𝐿 + ln(𝑇) × 𝑘 (14) 
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Once the multivariate distribution 𝐹(𝐺𝐷𝑃, 𝑃𝐶1, 𝑃𝐶2, 𝐻𝑃𝐼, 𝑈𝑁𝐸𝑀𝑃𝐿) is obtained, the probability 

of a scenario’s occurrence can be computed by Equation (15). 

∫ ∫ ∫ ∫ ∫ ∫ (𝑓(𝑧) × 𝑓(𝑔𝑑𝑝, 𝑝𝑐1,𝑝𝑐2, Δℎ𝑝𝑖, Δ𝑢𝑛𝑒𝑚𝑝𝑙)) 

Δ𝑢𝑛𝑒𝑚𝑝𝑙𝐻

Δ𝑢𝑛𝑒𝑚𝑝𝑙𝐿

Δℎ𝑝𝑖𝐻

Δℎ𝑝𝑖𝐿

𝑝𝑐2,𝐻

𝑝𝑐2,𝐿

𝑝𝑐1,𝐻

𝑝𝑐1,𝐿

𝑔𝑑𝑝𝐻

𝑔𝑑𝑝𝐿

𝑧𝐻

𝑧𝐿

  
(15) 

𝑑𝑧 𝑑𝑔𝑑𝑝 𝑑𝑝𝑐
1
 𝑑𝑝𝑐2 𝑑Δℎ𝑝𝑖 𝑑Δ𝑢𝑛𝑒𝑚𝑝𝑙 

where 𝑥𝐿 (resp. 𝑥𝐻) denotes the lower (resp. upper) bound of dimension 𝑥 of the scenario. 

To ensure a tractable implementation, the multivariate density distribution, denoted by 

𝑓(𝑔𝑑𝑝, 𝑝𝑐1, 𝑝𝑐2, Δℎ𝑝𝑖, Δ𝑢𝑛𝑒𝑚𝑝𝑙) in Equation (15), is expressed in terms of copula functions. The 

resulting Equation (A.1) is presented in Appendix 7 due to its length. Additionally, the proof of 

equivalence of both equations is provided in the Appendix 7 as well.  

Note that these probability values depend on the grid size in the multidimensional space and can 

therefore easily be manipulated. This does, however, not pose a significant problem, since the purpose 

of computing these probabilities is solely to allow for ranking the different RSTSs. Therefore, only 

the scenarios’ relative probability, i.e. as compared to other scenarios’ likelihood is required.  

2.6. Selection of most different and likely RSTSs 

Unlike the approach of Grundke and Pliszka (2017) the framework proposed in this study does not 

end with the determination of the most likely RSTS. The reason is that solely focusing on the RSTS 

with the highest probability leaves out important information that, if provided, might have affected 

decision making of top management when deciding on preventive actions to mitigate extreme risks. 

Instead, a number of RSTSs are selected that satisfy the following three criteria, which are based upon 

the criteria set by Kopeliovich et al. (2015):  

1. The selection includes the most likely RSTS. 

2. The other RSTSs included are among the 10 most likely scenarios as well. 

3. The RSTSs selected are maximally different. 

Whereas the first two criteria speak for themselves, the third criterion may require some further 

explanation. As scenarios are defined as vectors of macro-economic factor realizations, the diversity 

between the RSTSs can be measured by the standardized Euclidean distance between these vectors, 

as described by Equation (16).  
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𝑑𝑖,𝑗 = 

√
  
  
  
  
  
 
(zi − zj)

2

𝜎𝑍
2 +

(gdpi − gdpj)
2

𝜎𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ
2 +

(pc1,i − pc1,j)
2

𝜎𝑃𝐶1
2 +

(pc2,i − pc2,j)
2

𝜎𝑃𝐶2
2 +

                                         
(Δhpii − Δhpij)

2

𝜎Δ𝐻𝑃𝐼
2 +

(Δunempli − Δunemplj)
2

𝜎Δ𝑈𝑁𝐸𝑀𝑃𝐿
2

 (16) 

With the aim to satisfy all three criteria, first, the most likely RSTS is kept, second, the 9 next most 

likely RSTSs are considered and third, 2 of these 9 other RSTSs, 𝑖 and 𝑗, are selected such that the 

sum of the Euclidean distances, as presented by Equation (17), is maximized.  

𝐷𝑡𝑜𝑡𝑎𝑙 = 𝑑1,𝑖 + 𝑑𝑖,𝑗 + 𝑑𝑗,1  (17) 
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3. Implementation of reverse stress test framework 

3.1. Data 

The data required to model the changes in the balance sheet are described in Table 3.1.  

Table 3.1. Data description. 

Type of data  Source Timespan Freq. 

Interest rates Belgian Treasury bills and 

bonds 

Eikon 2006Q4 – 2016Q4 quarterly 

Belgian real GDP growth Eikon 2007Q1 – 2016Q4 quarterly 

Belgian HPI Eurostat 2006Q4 – 2016Q4 quarterly 

Belgian unemployment rate Eikon 2006Q4 – 2016Q4 quarterly 

Number of new mortgage defaults in Belgium CICR Jan. 2007 – Dec. 2016 monthly 

Number of outstanding mortgage loans in 

Belgium 

CICR Jan. 2007 – Dec. 2016 monthly 

Average transition matrix of European 

corporates 

S&P report 

2016 

1981-2016 / 

 

Default probability corporates of different 

rating categories 

S&P reports 

2006-2016 

2006-2016 yearly 

Number of corporations in each credit rating 

category 

S&P report 

2014 

2014 / 

 

Yearly default probabilities of mortgage loans can be computed by the historical fraction of defaults:  

𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒(𝑡) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑤 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑠 𝑜𝑓 𝑟𝑒𝑎𝑙 𝑒𝑠𝑡𝑎𝑡𝑒 𝑚𝑜𝑟𝑔𝑎𝑔𝑒𝑠 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 𝑟𝑒𝑎𝑙 𝑒𝑠𝑡𝑎𝑡𝑒 𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒𝑠 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑡
 

(18) 

 

As the time series required by Equation (18) only go back to January 2007, they can be considered as 

the bottleneck in the available data, which consequently leads to limiting the start of the other time 

series considered to 2007 as well. As the migration and default probability data are not yet reported 

for 2017, the ends of all time series are limited to 2016.  
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As opposed to all other data types, the times series of corporate obligors’ default probabilities and 

the average transition matrix over 1981-2016 are based upon European observations instead of only 

including Belgian companies. Even though Belgian corporations only make up 1.52 % of this 

European pool of corporates rated by S&P, it is considered an adequate approximation for the 

portfolio in this paper since about 75% of the latter pool consists of companies located in Western 

Europe. The economic situations in these countries are strongly intertwined with each other and with 

the Belgian economy; e.g. if a recession occurs in one of these countries, causing a significant change 

in the migration matrix, it will also affect the economy and migration probabilities in the other 

countries. Hence, it is assumed that the migration matrices for Belgium and Europe are the same or 

similar. A more detailed overview of the distribution of S&P rated corporates over European countries 

is provided in Appendix 8.  

One major data issue encountered is that taking yearly data points would lead to only 10 

observations, as default probabilities of mortgage loans are only available from 2007 on and defaults 

and migration probabilities of corporate loans are reported only until 2016. However, considering a 

shorter time interval between observations is not straightforward, as corporate default probabilities 

are only provided on a yearly basis. One must therefore consider the trade-off between the inaccuracy 

caused by having to disaggregate the yearly PDs into quarterly observed PDs and the inaccuracy of a 

model based on only 10 data points. Since all other data types are available at least on a quarterly 

basis, the former approach is expected to have a smaller impact on results. Furthermore, Zhou (2001) 

provides evidence that applying linear interpolation or other methods to fill in the values of a single 

lower frequency data series in order to use the information contained in all other higher frequency 

time series often results in a gain in information. 

To accomplish this disaggregation of the yearly PDs into quarterly observations linear 

interpolation can be applied, i.e. given the default probability in the end of year 𝑦, 𝑃𝐷𝑦, the default 

probability in the 𝑖-th quarter of that year can be computed as follows: 

𝑃𝐷𝑦,𝑄𝑖 = 𝑃𝐷𝑦−1 +
𝑃𝐷𝑦 − 𝑃𝐷𝑦−1

4
× 𝑖 (19)  

A second data issue encountered is that the S&P report of 2008 does not include a Europe-specific 

transition and default matrix. Again, this can be resolved by applying linear interpolation between the 

migration probabilities of 2007 and 2009.  
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3.2. Results 

The following seven subsections cover the obtained results. Sections 3.2.1-3.2.6 concretize the 

different model parameters. Afterwards, Section 3.2.7 examines the identified RSTSs.  

3.2.1. Dynamic lag model for PDmortgage 

To obtain a prediction for the default probability of mortgages for the coming period, a model 

consisting of two parts, denoted by Equations (7) and (8) (see Section 2.4.1), is estimated. The sample 

data used, which are time series of 𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒, Belgian GDP growth, unemployment rate and HPI, 

are plotted in Figure 3.1. Besides the clear non-stationarity of ln (
𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒

1−𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒
) and 𝐻𝑃𝐼, some 

persistence can also be seen in 𝑈𝑁𝐸𝑀𝑃𝐿.  

    

Figure 3.1. ln (
𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒

1−𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒
), GDP growth, HPI and unemployment rate over time. 

The results of the Augmented Dickey-Fuller (ADF) tests and corresponding required actions are 

provided in Table 3.2. The ADF tests for ln (
𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒

1−𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒
), 𝐻𝑃𝐼 and 𝑈𝑁𝐸𝑀𝑃𝐿 confirm the trend-

stationarity, resp. non-stationarity of these time series. A deterministic trend term should be included 

to obtain a statistically correct model to predict the default probability of the mortgage loan portfolio, 

and the residuals are subsequently regressed on the stationary transformations of the macro-economic 

factors. The plots of Δ𝐻𝑃𝐼 and Δ𝑈𝑁𝐸𝑀𝑃𝐿 and the ADF tests on these transformations, provided in 

Appendix 10, prove that taking first differences of 𝐻𝑃𝐼 and 𝑈𝑁𝐸𝑀𝑃𝐿 is sufficient to obtain 

stationarity. 
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Table 3.2. Results of ADF tests. 

Variable Trend? 
ADF 

statistic 
p-value Conclusion Action 

ln (
𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒

1 − 𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒
) Yes - 6.2435 5.974*10-5 

Trend-

stationary 

Include 

deterministic trend 

in model 

𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ No - 2.9657 0.04876 Stationary / 

𝐻𝑃𝐼 Yes - 2.5441 0.3065 Non-stationary First differences 

𝑈𝑁𝐸𝑀𝑃𝐿 No - 2.2887 0.1812 Non-stationary First differences 

 

Table 3.3 presents the estimated parameters and criteria of the two parts of the model. The trend 

term explains 57.09% of the variance in ln (
𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒

1−𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒
). The second part of the model is selected 

as the best model among the 1080 alternatives. Even though other models succeed in explaining a 

larger part of the residuals’ variance, they are much more complex, with many lags of each of the 

regressors (see Appendix 11). In these cases, the sample size is not sufficient to estimate all 

coefficients accurately, according to the one-in-ten rule31. A trade-off in explanatory power and 

simplicity is made by both the AIC and the BIC. These information criteria and the one-in-ten rule 

put forward the model presented in Table 3.3. A significance level of 𝛼 = 10% is adopted. The signs 

of the coefficients corresponding to Δ𝐻𝑃𝐼𝑡, 𝛥𝑈𝑁𝐸𝑀𝑃𝐿𝑡−1 and 𝛥𝑈𝑁𝐸𝑀𝑃𝐿𝑡−2 are consistent with 

economic intuition and with previous literature (Li, 2014 and references therein). 𝛥𝑈𝑁𝐸𝑀𝑃𝐿𝑡, 

however, turns out to be of negligible importance for the prediction of ln (
𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒

1−𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒
). This can be 

interpreted as follows: an increase in unemployment only positively affects the default probability in 

the long run. Note that the transformation of 𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 into log odds leads to a more complex 

interpretation of the coefficients. For instance, an increase in Δ𝐻𝑃𝐼𝑡 by one unit is expected to result 

                                                 
31 The one-in-ten rule advises to have a sample containing at least 10 data observations per explanatory variable (Harrell et al., 1984; 

Harrell, Lee, Mark, 1996; Peduzzi et al., 1996). 
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in a decrease of 𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒,𝑡 of 2.24%.32 As the p-value of the Q-statistic33 is large, the assumption 

that the model’s residuals are white noise is not rejected and, hence, the model is concluded to be 

valid. The model’s accuracy has been tested using a simulation that imitates a true out-of-sample 

forecast by splitting the observations repeatedly into two parts. The resulting Root Mean Squared 

Percentage Error (RMSPE) equals only 5.31%, which indicates that the model is accurate.  

Table 3.3. Parameters and properties of model selected to predict 𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒. 

Model part 1 

Const. Trend Adj. R2 p-value F test 

-5.063093**** -0.010665**** 0.5709 1.057*10-8 

Model part 2 

(Lags of) explanatory variables Adj. R2 0.3109 

Const. Δ𝐻𝑃𝐼𝑡 𝛥𝑈𝑁𝐸𝑀𝑃𝐿𝑡  𝛥𝑈𝑁𝐸𝑀𝑃𝐿𝑡−1 𝛥𝑈𝑁𝐸𝑀𝑃𝐿𝑡−2 AIC -74.45 

0.0198 -0.0227* -0.0436 0.0789** 0.0516* 

BIC -64.31 

RMSPE 0.0531 

p-val. Q-stat.  0.6533 

‘****’ = sign. on 0.1% level, ‘***’ = sign. on 1% level, ‘**’ = sign. on 5% level, ‘*’ = sign. on 10% level  

 

3.2.2. PCA 

Figure A.7 in Appendix 12 shows the Belgian government benchmark interest rates with maturities 

ranging from 3 months to 30 years over time. Due to the downward trend in all interest rates, non-

stationarity is suspected and for most maturities subsequently confirmed by the results of the ADF 

tests, provided in Table A.8 in Appendix 12. Following Grundke and Pliszka (2017) in taking 

percentage differences, as expressed by Equation (20), does not offer a solution; the time series of 

                                                 
32 When 𝑋1 = 𝑘 ⇒ 𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 = 𝑒𝛽0+𝛽1𝑘+𝛽2𝑋2+𝛽3𝑋3+𝛽4𝑋4 

 When 𝑋1 = 𝑘 + 1 ⇒ 𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒′ = 𝑒𝛽0+𝛽1(𝑋1+1)+𝛽2𝑋2+𝛽3𝑋3+𝛽4𝑋4 = 𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+𝛽3𝑋3+𝛽4𝑋4 × 𝑒𝛽1 .  

  ⇒ 𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒
′ −  𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 =  𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒(𝑒

𝛽1 − 1)  

 

33 The Q-statistic tests whether a model’s residuals are coming from a white noise process, which is a sequence of i.i.d. stochastic 

variables. If this 𝐻0 is rejected, it means that the residuals still contain some persistent correlation structure and the validity of the 

model considered is rejected. 
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maturity of 7 years and 9 years are still non-stationary after this transformation. Furthermore, the 

resulting values would become difficult to interpret due to the frequent occurrence of negative interest 

rates recently.34 Therefore, regular changes are computed instead, as expressed by Equation (21). 

Table A.8 in Appendix 12 additionally confirms that these transformations are stationary for all 

maturities.  

%Δ𝑟𝑚(𝑡) = 𝑟𝑚(𝑡) − 𝑟𝑚(𝑡 − 1)

𝑟𝑚(𝑡 − 1)
 

∀ 𝑚 ∈ {3𝑀, 6𝑀,… , 30𝑌𝑅} (20) 

Δ𝑟𝑚(𝑡) = 𝑟𝑚(𝑡) − 𝑟𝑚(𝑡 − 1) ∀ 𝑚 ∈ {3𝑀, 6𝑀,… , 30𝑌𝑅} (21) 

 

Figures 3.2 and 3.3 are used as visual aids to decide how many PCs should be retained. All three 

rules of thumb described in Section 2.4.3 (Kaiser-Guttman criterion, Scree plot “elbow” and 80%-

rule) consistently lead to the conclusion that two PCs (𝑃𝐶1(𝑡), 𝑃𝐶2(𝑡)) should be retained, together 

accounting for 90.84% of the total variance of the term structure of risk-free interest rates.  

Analyzing Figure 3.4, which presents the factor loadings corresponding to each PC, allows for 

the interpretation of both PCs. The factor loadings of 𝑃𝐶1(𝑡) all have the same negative sign and this 

first PC can therefore be interpreted as the average level of the interest rate curve. Whereas the factor 

loadings of 𝑃𝐶2(𝑡) are also negative for short maturities, they become positive for longer maturities. 

The second PC can therefore be interpreted as the slope of the interest rate curve. 

     

Figure 3.2. Scree plot, denoting 

each PC’s eigenvalue. 

Figure 3.3. Cumulative 

percentage of variance 

explained by PCs. 

Figure 3.4. Factor loadings of 

the two PCs retained. 

                                                 
34 Take for example the case when the interest rate was negative at time t, e.g. -0.1% and becomes positive at time t+1, e.g. 0.1%. The 

resulting percentage change equals 
0.1%−(−0.1%)

−0.1%
= −2 < 0, even though the change was actually positive. 
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3.2.3. Asset return sensitivity computations 

The asset return sensitivities towards 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, 𝑃𝐶1 and 𝑃𝐶2, estimated using Equation (10) and 

to be substituted in Equation (9), are presented in Table 3.4. For both the investment grade and the 

speculative grade, the unobservable systematic risk factor is unimportant. Note that this is beneficial 

for the interpretability of the identified RSTSs: in the most likely RSTS the value of the unobservable 

systematic risk factor will always be near zero and the scenarios can therefore be interpreted by only 

observable risk factors. The sign of 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ is economically intuitive: an increase in GDP is 

expected to increase the obligors’ returns, ceteris paribus. High interest rates result in expensive loans 

and are therefore expected to reduce obligors’ asset returns. An increase in 𝑃𝐶1 results in a decrease 

of interest rates over all maturities, consequently encouraging investment. Grundke and Pliszka 

(2017) explain however that central banks raise (resp. lower) the level of interest rates as a tool to 

slow down (resp. speed up) the economy in case of large economic growth accompanied by inflation 

(resp. a recession). The sign of the sensitivity towards 𝑃𝐶1 depends on which of the two reasonings 

weighs heavier and is hence difficult to predict. This is also shown in Table 3.4, as the sign differs 

depending on the initial rating grade. An increase in 𝑃𝐶2 results in an increase of the slope of the 

yields curve. Since a steep yield curve corresponds to a booming economy, the sign of the asset 

sensitivity towards 𝑃𝐶2 is expected to be positive, which is confirmed in Table 3.4. The RSTSs are 

therefore expected to consist of a near-zero value for 𝑍 and a small value for 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ and 𝑃𝐶2. 

The expected value of 𝑃𝐶1 depends on the rating category of the obligors.  

Table 3.4. Asset return’s sensitivities towards the macro-economic risk factors. 

 𝑍(𝑡) 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ(𝑡) 𝑃𝐶1(𝑡) 𝑃𝐶2(𝑡) 

Speculative grade 9.1357*10-77 0.9995 0.2888 0.4085 

Investment grade 2.8493*10-24 0.9150 -0.0776 1.3430 
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3.2.4. Macro-economic factors’ marginal distributions  

In order to compute the obligors’ asset returns, samples must be drawn from the multivariate 

distribution 𝐹(𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, 𝑃𝐶1, 𝑃𝐶2), where the latter can only be obtained after fitting marginal 

functions and a copula function for the macro-economic risk factors 𝐺𝐷𝑃growth, 𝑃𝐶1 and 𝑃𝐶2. 

Additionally, marginal functions for the two remaining variables, Δ𝑈𝑁𝐸𝑀𝑃𝐿 and Δ𝐻𝑃𝐼, and the 

overall copula function, linking the five factors into a multivariate distribution, are fitted as they will 

be required in order to compute the RSTS’s likelihood. 

Table 3.5 shows that, whereas the Kolmogorov-Smirnov (KS) test does not reject the 𝐻0 of 

normality for any variable, the Jarque-Bera (JB) test rejects this assumption for both 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ and 

𝑃𝐶2. Analyzing the density functions (Figure 3.5) and qqplots (Figure 3.6) allows for the detection 

of deviations, which appear to be mainly situated in the left tail for 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ and in the right tail 

for 𝑃𝐶2. Since the conclusion whether or not to accept the normality assumption varies depending on 

which test is used, any further analysis is conducted twice, i.e. once using only normal marginal 

distributions and once using GPD distributions to model the left (resp. right) tail of the distribution 

of 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ (resp. 𝑃𝐶2). Analysis of the MRL plots of both variables35 (Figures 3.7 and 3.8), in 

combination with ensuring that threshold exceedance occurs at least twice36 in the sample, results in 

selecting the following thresholds: 𝑢𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ = 𝑢𝐿 = −1.14 and 𝑢𝑃𝐶2 = 𝑢𝑅 =  2.5. The scale and 

shape parameters of the GPD for 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ (resp. 𝑃𝐶2) are estimated using the MLE and equal 

𝛽𝐺𝐷𝑃 =  1.028576 and 𝜉𝐺𝐷𝑃 = −1.077893 (resp. 𝛽𝑃𝐶2= 2.3452091 and 𝜉𝑃𝐶2 = −0.9716526).  

Table 3.5. Results tests for normality of marginal distributions. 

 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ 𝑃𝐶1 𝑃𝐶2 Δ𝐻𝑃𝐼 Δ𝑈𝑁𝐸𝑀𝑃𝐿 

JB test statistic 79.299 1.4523 25.04 1.8733 2.7755 

p-value JB 2.2e-16 0.4838 3.653*10-6 0.3919 0.2496 

KS test statistic 0.1665 0.14195 0.16397 0.12286 0.10844 

p-value KS 0.1943 0.3614 0.2082 0.5411 0.7347 

 

 

                                                 
35 Note that in order to model the left tail of 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, a change of sign has been implemented for all data observations as the fitting 

of a GPD distribution in R is always conducted on the right tail. 

36 This is required to estimate the GPD’s two parameters, 𝜉 and 𝛽. 
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Figure 3.5. Density functions of 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ and 𝑃𝐶2. 

  

Figure 3.6. QQplots of 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ and 𝑃𝐶2. 

  
Figure 3.7. MRL plot for 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ × (−1). Figure 3.8. MRL plot for 𝑃𝐶2. 
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3.2.5. Copula goodness of fit 

After specifying the macro-economic factors’ marginal distributions, they should be combined into a 

multivariate distribution using a copula function. The value of the Cramér/von Mises test statistic of 

the different alternatives considered and their corresponding p-values are provided in Table 3.6 (resp. 

Table 3.7) for the multivariate distribution containing 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, 𝑃𝐶1 and 𝑃𝐶2 (resp. 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, 

𝑃𝐶1, 𝑃𝐶2, Δ𝐻𝑃𝐼, Δ𝑈𝑁𝐸𝑀𝑃𝐿). The 𝐻0 that the copula constitutes a good fit of the correlation structure 

is accepted for each alternative. After comparing the different criteria (ML, AIC, BIC) for each 

alternative copula function, the t-copula with 𝑑𝑓 = 4 (respectively the t-copula with 𝑑𝑓 = 5) is 

chosen to model the multivariate distribution of 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, 𝑃𝐶1and 𝑃𝐶2 (respectively 

𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, 𝑃𝐶1, 𝑃𝐶2, Δ𝐻𝑃𝐼, Δ𝑈𝑁𝐸𝑀𝑃𝐿). Corresponding parameters to model the correlation 

structure are provided in Appendix 13. 

Table 3.6. Information criteria copula functions for 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, 𝑃𝐶1 and 𝑃𝐶2. 

Table 3.7. Information criteria copula functions for all five macro-economic factors. 

 Cramér/von Mises 

test statistic 
p-value ML AIC BIC 

Normal 0.035429 0.6788 6.265608 -6.531215 -1.4645767 

𝑡2𝑑𝑓 0.030602 0.6429 6.418042 - 4.836084 1.9194342 

𝑡3𝑑𝑓 0.034265 0.5789 7.786924 -7.968755 - 0.8183309 

𝑡4𝑑𝑓 0.036022 0.522 7.984378 - 7.968755 - 1.2132376 

𝑡5𝑑𝑓 0.036984 0.5 7.935113 - 7.870227 - 1.1147087 

 Cramér/von Mises 

test statistic 
p-value ML AIC BIC 

Normal 0.032625 0.532 12.17161 -4.343218 12.545577 

𝑡2𝑑𝑓 0.029937 0.5789 11.84145 - 1.682892 16.894782 

𝑡3𝑑𝑓 0.030516 0.5799 15.88734 - 9.774673 8.803001 

𝑡4𝑑𝑓 0.030921 0.5559 16.72786 - 11.455717 7.121957 

𝑡5𝑑𝑓 0.031205 0.5699 16.81818 - 11.636352 6.941322 
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3.2.6. Asset return thresholds 

Once the marginal distributions and copula functions have been fitted, samples can be drawn from 

the macro-economic factors’ multivariate distribution and the idiosyncratic risk factor in order to 

compute the asset return distribution. Table A.5, provided in Appendix 9, presents the cumulative 

migration probabilities of obligors that are initially of investment or speculative grade. As these 

numbers were not directly available, they are computed using S&P’s average one-year migration 

matrix over 1981-2016 and the number of corporations in each of the different credit ratings 

{𝐴𝐴𝐴,… , 𝐶𝐶𝐶 − 𝐶}. A more detailed explanation is additionally provided in Appendix 9.  

Table 3.8 presents the asset return thresholds that correspond to the cumulative migration 

probabilities of Table A.5 for the different settings considered. The result is consistent with intuition, 

as for a given initial rating grade, the thresholds are in general more dispersed when GPD are 

considered to model 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ and 𝑃𝐶2 than in the case when only normal marginal distributions 

are used as approximations. Additionally, note that initially speculative graded obligors default more 

easily, as the asset thresholds below which one fails are significantly higher than those for initially 

investment graded obligors. This is consistent with the reasoning that a larger shock in macro-

economic risk factors is required to result in a credit migration of an obligor of investment grade. 

Table 3.8. Asset return thresholds. 

Initial 

rating 

Marg. 

distr. 
𝑅𝐶𝐶𝐶−𝐶 𝑅𝐵 𝑅𝐵𝐵 𝑅𝐵𝐵𝐵 𝑅𝐴 𝑅𝐴𝐴 𝑅𝐴𝐴𝐴 

S
p
ec

u
la

ti
v
e 

g
ra

d
e 

Normal - 2.08 - 1.40 0.79 2.92 5.17 7.13 7.13 

GPD - 2.61 - 1.77 0.89 3.45 5.78 7.55 7.55 

In
v
es

tm
en

t 

g
ra

d
e 

Normal -8.23 -7.69 -6.71 - 4.59 - 0.07 2.25 4.58 

GPD - 8.85 - 8.23 - 7.19 -4.77 -0.11 2.28 4.92 

 
  



  

48 

3.2.7. RSTS determination 

The RSTS determination is performed four times (see Figure 3.9): on the one hand, the bank’s 

corporate loan portfolio is either assumed to be of the investment type or of the speculative type, on 

the other hand, the marginal distributions for 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ and 𝑃𝐶2 can be approximated by either 

normal distributions or GPDs. For the settings with obligors of investment (respectively speculative) 

grade, the initial CET1 ratio equals 16.74% (respectively 13.76%). For both settings of marginal 

distributions, the number of RSTSs determined is significantly larger37 in the case of initially 

speculative grade obligors than in the case of initially investment grade obligors.  

Table 3.9. The four settings for RSTS determination. 

 

Initial grade of corporate obligors  

M
ar

g
in

al
 

p
ro

b
ab

il
it

y
 

d
is

tr
ib

u
ti

o
n

s Investment grade, 

normal distributions 

Speculative grade, 

normal distributions 

Investment grade, 

normal & GPD 

Speculative grade, 

normal & GPD 

 

For each of the four settings, the 3 ‘most different RSTSs’ out of the 10 most probable RSTSs are 

visualized in Figure 3.10 and Figure 3.11. Whereas, the triangles represent the most likely RSTSs, 

the circles denote the two RSTSs that are selected such that the total distance between each of the 

three RSTSs is maximized. Note that the RSTSs presented are the scenarios which are extreme 

enough to result in the bank’s default, and not necessarily the most extreme scenarios. Therefore, the 

values of some dimensions do not necessarily lead to lower asset returns for obligors or higher default 

probabilities of mortgage loans on their own. If the other dimensions already ensure the default, the 

remaining risk factors can be set such to maximize the scenario’s probability of occurrence. The 

relatively high threshold to default (CET1<10.5%) increases the probability of this phenomenon, as 

it reduces the necessity of all risk factors being extreme.  

                                                 
37 For specific numbers, see Appendix 14.  
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Figure 3.10. Most different RSTSs’ values of 

𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, 𝑃𝐶1 and 𝑃𝐶2 for four different 

settings. 

Figure 3.11. Most different RSTSs’ values of 

𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, 𝛥𝐻𝑃𝐼 and 𝛥𝑈𝑁𝐸𝑀𝑃𝐿 for four 

different settings. 

 

The first thing to observe when analyzing Figure 3.10 and Figure 3.11 is that none of the six axes 

represent the unobservable systematic risk factor 𝑍. The reason is that the value of this dimension is 

close to zero for all RSTSs. This was already predicted before and implies that the systematic 

unobserved risk factor is virtually irrelevant in the computation of the CET1 ratio. However, its value 

still plays a role in the computation of the scenarios’ probability. Since the unobservable systematic 

risk factor is assumed to be standard normally distributed, this probability is higher for a lower smaller 

absolute value of this risk factor. This observation is completely consistent with the results from 

Grundke and Pliszka (2017).  
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Second, the black and red (respectively blue and green) RSTSs are clustered together. In other 

words, results are similar for the settings with the same initial credit grading for the corporate obligors 

but with different assumptions about the marginal distributions. Only the 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ values differ 

slightly between the two settings with speculative grade portfolios; these values are more negative in 

case 𝑃𝐶2 and 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ are modeled using GPD distributions (blue) than when only normal 

marginal distributions are considered (green). This result corresponds to the better modeling of the 

left tail of 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ. Nevertheless, in general, the differences are small and the results are 

concluded to be robust for the two different assumptions about the marginal distributions.  

Third, note that the results are consistent with the idea that the bank with obligors with an initial 

speculative grading fails more easily: the RSTSs denoted by the blue and green symbols presented 

are less extreme, with in general smaller absolute values for all risk factors. This can particularly be 

observed in Figure 3.10. In general, the 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ values are lower for the RSTSs of a bank with 

a portfolio of investment grade, however, not in an extreme sense. The yield curves, obtained by 

translating 𝑃𝐶1 and 𝑃𝐶2 back to the interest rates over different maturities, are provided in Figure 

3.12 for the most likely RSTSs in each of the four settings. Additionally, the mean yield curve over 

the past 10 years is provided in black. The yield curves are the same for the most likely scenarios for 

the two settings with an investment grade portfolio, since the values of both 𝑃𝐶1 and 𝑃𝐶2 are the 

same for these two scenarios. As predicted, the values of 𝑃𝐶1 are positive for the settings with 

investment grade obligors (i.e. the black and red triangles in Figure 3.10). This is translated to a 

decrease in the interest rate level over all maturities and, hence, to a downward shift of the yield 

curve. Furthermore, a large negative value of 𝑃𝐶2 is required for these settings. This represents a tilt 

of the yield curve, causing it to become inverse. For the settings with a speculative grade portfolio 

(i.e. the green and blue triangles), the prediction of negative values of 𝑃𝐶1 is confirmed as well. This 

is translated to an upward shift of the yield curve. The values of 𝑃𝐶2 are not very significant for these 

settings. Therefore, the corresponding yield curves have approximately the same slope as the mean 

yield curve. Whereas the 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ values are not that extreme, the shocks in interest rates are 

large. Generally, it can be concluded that obligors of speculative grade suffer more from an increase 

in borrowing cost, whereas obligors of investment grade suffer more from an inverse yield curve, 

indicating a recession. 
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Figure 3.12. Shocks in the yield curve in the most likely RSTS of each of the four settings. 

Fourth, whereas most of the values of the growth in GDP and the two PCs correspond to what 

was predicted, this does not always hold for the change in the HPI and the change in the 

unemployment rate. Consider for instance the most likely RSTSs in both settings of obligors of 

investment grade (i.e. the black and red triangles in Figure 3.11). Whereas Δ𝑈𝑁𝐸𝑀𝑃𝐿 does not reach 

an extreme value, the value of Δ𝐻𝑃𝐼 is even positive. Intuitively, this value should be negative, since 

a downturn in house prices results in a lower residual value of the mortgage loans in case of a default. 

This result should however be interpreted carefully. It is not the case that a higher value of Δ𝐻𝑃𝐼 

leads to a higher CET1 ratio. The minimum requirement of 10.5% has also been breached by similar 

scenarios but with a negative value for the Δ𝐻𝑃𝐼 dimension. The CET1 ratio of these similar RSTSs 

was even lower, but their probability was significantly lower as well. Therefore, these scenarios did 

not make the top 10 most likely RSTSs and cannot be found in Figures 3.10 and 3.11. The relatively 

high value of Δ𝐻𝑃𝐼 can be logically explained as the house prices in Belgium have steadily grown 

over the last years, making a sudden downturn considerably unexpected. The scenarios can thus be 

interpreted as follows: even when house prices increase considerably, the bank can still fail due to 

unfavorable values for the other risk factors.  

Fifth, the higher dispersion of the range of the dimensions Δ𝑈𝑁𝐸𝑀𝑃𝐿 and Δ𝐻𝑃𝐼 leads to the 

conclusion that it are the other three risk factors, 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, 𝑃𝐶1 and 𝑃𝐶2, that deliver the most 
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important contributions to the bank’s default, resulting in more leeway for Δ𝑈𝑁𝐸𝑀𝑃𝐿 and Δ𝐻𝑃𝐼 to 

maximize the scenarios’ probability and the Euclidean distance between the RSTSs. This can be 

explained by the fact that an F-IRB approach is applied for the mortgage loans portfolio, which allows 

to compute 𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 using internal models while keeping the value of 𝐿𝐺𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 fixed. The 

𝐿𝐺𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 value of only 10% limits the importance of the default probability of mortgage loans 

and consequently of Δ𝐻𝑃𝐼 and Δ𝑈𝑁𝐸𝑀𝑃𝐿. It additionally allows to explain the positive value of 

Δ𝐻𝑃𝐼, discussed earlier. Additional simulations with 𝐿𝐺𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 = 45% have been executed for 

the two settings with the obligors of investment grade38. Whereas no complete analysis of these results 

is provided here, the main conclusions to be drawn are the following. First, the values for 𝑃𝐶1 and 

𝑃𝐶2 are considerably less extreme, the value of Δ𝑈𝑁𝐸𝑀𝑃𝐿 remains the same and the value for Δ𝐻𝑃𝐼 

decreases significantly, becoming negative for the most likely RSTS. This indicates that the role of 

the change in house prices in the bank’s default, increases. Second, it is observed that, in general, 

RSTSs are less extreme for this higher 𝐿𝐺𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 value. This can be explained by the fact that the 

initial CET1 ratio is only 11.38%, which is already close to the threshold value of 10.5%.  

The identified RSTSs can be compared to historical crises. This exercise is executed for the 

scenarios presented in Figure 3.10 and 3.11 (i.e. with 𝐿𝐺𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 = 10%). Overall, no great 

recession is required in order to result in a default of the bank with speculative grade obligors. It is 

sufficient that economic growth, approximated by 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, decreases to 0%, while interest rates 

increase, resulting in loans being more expensive. The scenarios identified for this setting can be 

considered as a (much) weaker version of the recession in the U.S. in the 1980s. During these years, 

there was little to no economic growth, no change in unemployment rate and interest rates were set 

considerably high by the Federal Reserve with the aim to control inflation (Cowan, 1981; Rattner, 

1981). A greater recession is required in order to result in a default of the bank with the investment 

grade portfolio. Especially the downward slope of the yield curve (see Figure 3.12) indicates that the 

economy is heading towards a recession. Investors expect interest rates to decrease and therefore want 

to invest in longer-term securities in order to lock in the current higher yields. Additionally, due to 

the fear of having to reinvest at lower interest rates, investors are less attracted to short-term 

investments. Hence, demand for long-term (respectively short-term) securities increases (respectively 

decreases), resulting in higher (respectively lower) prices for securities with long (respectively short) 

maturities and lower long-term (respectively higher short-term) yields and consequently leading to a 

                                                 
38 For the settings with the obligors of speculative grade, the initial CET1 ratio of 9.94% already results in immediate default, making 

further analysis pointless. 
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flatter or inverted yield curve. Whereas the size of the downward slope of the yield curve can be 

compared to the one in the U.S. in 1981, the negative interest rates are a typical characteristic of the 

European financial market during recent years (although the negative interest rates in the RSTSs are 

still more extreme.). Negative economic growth and an increase in unemployment rate are similar to 

the situation in the euro area in 2008 (although the GDP growth was even more negative during this 

crisis) (ECB, 2016). Note that during this financial crisis of 2007-2009, the housing market in 

Belgium did not slow down significantly. Instead, house prices stagnated. This is consistent with the 

observation that the Δ𝐻𝑃𝐼 dimension of the identified RSTSs does not contribute to the bank’s 

default. In other words, if the bank with the investment portfolio defaults, it is more likely to be 

caused by an economic downturn, associated with higher unemployment rates and low expectations 

about future recovery (i.e. inverted yield curve) than by a collapse of the housing market (Delmendo, 

2018).  
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4. Conclusion 

The construction of a quantitative reverse stress testing framework is a complex problem, as it needs 

to account for many potential risks influencing a bank’s activities. A limited number of previous 

research contributions have proposed quantitative RST methodologies. However, none of these 

models include mortgage loans and none of the models that include corporate obligors have been 

implemented on European data. The purpose of this study is to reduce this gap by constructing a 

quantitative RST framework focusing on credit risk from the perspective of a medium to large Belgian 

savings bank.  

The main results of the RST are that for a 𝐿𝐺𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 of only 10%, shocks in 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ and 

the yield curve (represented by 𝑃𝐶1 and 𝑃𝐶2) play the biggest role in the bank’s default. The results 

are consistent with the idea that a bank with obligors of higher credit ratings fail less easily. In other 

words, in general, larger shocks of 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, 𝑃𝐶1 and 𝑃𝐶2 are required to result in the bank’s 

default than when its obligors are initially of speculative grade. Whereas speculative grade obligors 

are more likely to default or downgrade when the yield curve undergoes a large upwards shift, 

investment grade obligors suffer more from a downward shift combined by an inverse yield curve, 

indicating a recession. The identified RSTSs can be compared to historical crises. The most likely 

RSTS for the bank with the speculative portfolio resembles a weaker version of the recession in the 

U.S. in the early 1980s. For the settings with the investment grade portfolio, the most likely RSTS 

adopts the yield curve slope of this same recession. In terms of the other risk factors this RSTS 

resembles the economic situation in the euro area around the financial crisis in 2007-2009, combined 

with strongly negative interest rates. Increasing 𝐿𝐺𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 to 45% leads to a lower initial CET1 

ratio, already close to the default threshold of 10.5% (and already below 10.5% for the bank with the 

speculative grade portfolio), and hence, the RSTSs become less extreme. Whereas the relative role of 

a change in the HPI and unemployment rate, as compared to the other three risk factors, becomes 

larger in this setting, no large shocks are required to result in the bank’s default. 

Even though the framework’s output satisfies the regulatory requirements, i.e. putting forward 

concrete scenarios which would result in the bank’s bankruptcy and ranking these RSTSs according 

to probability, these results should nonetheless be interpreted carefully. Two additional remarks are 

in order. First, the aim of a quantitative RSTs is to determine scenarios relevant for a given bank and 

this paper does not claim to provide a comprehensive framework for every possible type of bank. 

Second, a quantitative RST framework should always be complemented by qualitative RSTs, since 

some risk types, e.g. reputational risk, are difficult to quantify (FSA, 2009; Grundke and Pliszka, 



  

55 

2017). The framework is flexible in the sense that other risk factors can easily be included in its two 

main components, i.e. the CreditMetricsTM model for the corporate obligors and the DL model for the 

mortgage loans. The application of copula functions additionally adds to this flexibility, since it 

allows for the computation of the identified RSTSs’ probability even in the case when the marginal 

distributions of the individual risk factors are not standard.  

As opposed to this strength in flexibility, there are a considerable number of limitations, some of 

which can be considered as topics to address in further research. First, a more extensive data set is 

required to ensure the generalizability of the results. The data set used contains only 40 observations, 

which implies a high estimation risk for both the asset correlations in the CreditMetricsTM model and 

the model to predict the default probability of mortgage loan39. However, whereas the data used in 

this paper are limited to publically available data sources, it is likely that banks have more accurate 

data about mortgage loan defaults and migration rates from the corporate loans included in the 

portfolio at their disposal. Additionally, the further concretization of the stylized balance sheet is 

possible if the required data are at hand, e.g. a classification of corporates in terms of sector, which 

allows for the use of sector-specific LGD values. Alternative macro-economic risk factors can also 

be included.40 Thanks to the flexibility of copula functions, no strict assumptions are imposed on the 

distribution of these factors. Hence, although the results provided should be interpreted cautiously 

due to limited data availability, this paper contributes by proposing a flexible framework which can 

be used in further research as a procedure in which a bank’s available data can be inserted.  

Second, this paper defines a bank’s health by solely evaluating whether the minimum capital 

requirements are met. A topic for further research might be to consider other failure definitions, such 

as a breach of the Net Stable Funding Ratio or the Liquidity Coverage Ratio. Both ratios intend to 

ensure a bank’s liquidity during periods of stressed market conditions, which has been proven 

important during the financial crisis of 2007-2009.  

Third, this framework does not allow to assess the effect of interest rate risk on the bank’s own 

activities41. In contrast to the framework proposed by Grundke and Pliszka (2017), it does not apply 

a net present value approach to compute the values of the different balance sheet components. The 

reason for this is two-fold. First, this paper focuses on credit risk rather than interest rate risk. 

                                                 
39 Note, however, that concerning the selected regression model for 𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒, the one-in-ten rule of thumb is nevertheless satisfied. 

40 Other risk factors proposed are, for instance, commodity prices or credit spreads (Avouyi-Dovi et al., 2009; Misina et al., 2006, as 
cited in Grundke and Pliszka, 2017). 

41 Note that interest rate changes are however indirectly included in the CreditMetricsTM model to predict the migration changes of the 
bank’s obligors. 
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Therefore, it is more intuitive to start from the current value of the components and to compute the 

new expected values for a given scenario by incorporating the migration changes and default 

probabilities. Second, the interest rates over the short term are currently negative in Belgium. The 

resulting discounted values are by many perceived as counterintuitive (EFRAG, 2017; Moreolo, 

2016). Interest rates are, however, known to play a significant role in the profitability of banks’ 

maturity transforming activities. Hence, the issue of incorporating this risk type is an intriguing one 

and could be usefully explored in further research.  

Fourth, analogous to Grundke and Pliszka (2017) the balance sheet is assumed to be static, 

which means that no refinancing operations or issuing of new loans are considered, and that the 

composition of assets and liabilities thus remains the same. Additionally, the liability side of a bank 

is assumed to remain unchanged. However, the bank run on DSB Bank in the Netherlands (2009), 

leading to its bankruptcy, is an example that demonstrates that this is a strong assumption. Further 

work should therefore shed more light on the effect of sudden deposit withdrawals and refinancing 

options. 

Fifth, all statistical models suffer from model risk and this framework does not differ in that 

respect. With the aim to reduce this risk, the following measures are taken: First, 1080 models to 

predict 𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒 are compared in explanatory power and predicting performance. Second, the 

RSTSs determination is performed for four different settings instead of only one and the differences 

in results are discussed in a sensitivity analysis approach. However, model risk remains an issue in 

the choice of threshold value 𝑢. The distribution of the tails of the risk factors only converges to GPD 

for an 𝑢 deep in the tails, but the threshold selection is a topic of discussion. Although a sensitivity 

analysis on the choice of 𝑢 is out of scope for this study, this could be an area for further research. 

A last limitation concerns the computational intensiveness, which is a well-known issue in the 

RST context. As previously explained, the framework’s tractability diminishes when many risk 

factors are included. The PCA approach already achieves a reduction in scenario dimensionality from 

18 to 6, while retaining most of the variance in the interest rate term structure. However, although 

only 8 steps are considered in each of these 6 dimensions, this results in 262144 scenarios, for each 

of which a Monte Carlo simulation needs to be conducted in order to compute the absolute VaR of 

the CET1 ratio conditional upon that scenario. Areas for further research consist therefore of the 

implementation of other dimensionality reduction methods and smarter search algorithms instead of 

the simple grid search.  
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Appendix 

Appendix 1 

Figure A.1 represents the FSA’s integrated stress testing framework (FSA, 2009). Two types of 

analyses can be distinguished. On the one hand, there is the micro-prudential analysis, covering both 

the bank’s own stress testing and the stress tests conducted by the supervisory institution. On the 

other hand, a macro-prudential analysis comprises the conduct of a system-wide stress test. The EBA 

guidelines are structured in a similar way (EBA, 2015). Note that reverse stress testing is considered 

a part of the firms’ own stress testing. 

 

Figure A.1. FSA's integrated stress testing framework.  

(Retrieved from: FSA, 2009) 
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Appendix 2 

The Basel Accords are a set of recommendations on regulation in the banking sector, issued by the 

BCBS. The recommendations are not enforced directly, but are instead translated to national laws to 

which the banks in the corresponding country should comply. So far, three Basel Accords are 

published.  

Basel I is published in 1988 and focuses solely on credit risk and capital requirements. Assets were 

classified into five groups, each of which correspond to a different degree of credit risk and are 

assigned a different risk weight (between 0% and 100%). A minimum capital ratio of 8% was 

imposed. An amendment was made in 1996 in order to include market risk. More specifically, banks 

should also consider potential trading losses resulting from changes in market prices.  

Basel II, first issued in 2004 and frequently updated in the years thereafter, served as a response to 

the criticism that Basel I was not sufficiently risk sensitive. The Basel II framework contain three 

pillars. Pillar 1 covers the minimum capital requirements. Besides credit and market risk, operational 

risk is additionally considered. Instead of the simple asset classification under Basel I, banks can 

choose between three methods to compute the credit risk component: the Standard approach (STA), 

the Foundation Internal Rating approach (F-IRB) and the Advanced Internal Rating approach (A-

IRB). The STA approach is similar to the method under Basel I. Asset classification is based on 

external ratings from recognized rating agencies and in order to increase risk sensitivity, a broader 

range of risk weights is provided. Under the F-IRB approach banks can apply internal rating systems 

in order to compute the counterparties’ default probability. Risk weighted assets are computed as a 

function of LGD and EAD, which remain defined by regulatory authorities. Under the A-IRB 

approach also LGD and EAD are computed internally by the bank itself, although certain minimum 

requirements should be satisfied. Basel II additionally distinguishes different capital types: core 

capital, Tier 1 capital, Tier 2 capital and Tier 3 capital, of which the latter is removed in Basel III. 

The key distinguishing characteristics between the different types are their reliability and the loss 

absorption capacity. A comprehensive overview of the different components included in every capital 

type is out of the scope of this paper, but can be found in the CRR, Part 2 (EP, 2013). The minimum 

requirements for each capital type are presented in Table 2.2. Pillar 2 covers supervisory review and 

constitutes a framework for handling risk types not covered by pillar 1, such as systemic-, 

concentration-, reputational- and liquidity risk. Pillar 3 deals with market discipline. Its aim is to 

increase transparency of the capital structure and risk profile through improved disclosure.  
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Although Basel III was agreed upon by the members of the BCBS in 2011, its implementation is 

extended to 2019. The adjustments to the Basel framework aim to address the deficiencies in banking 

regulation revealed by the financial crisis in 2007-2009. It introduces a minimum leverage ratio and 

two liquidity ratios: the Liquidity Coverage Ratio (LCR) and the Net Stable Funding Ratio (NSFR). 

Additionally, it imposes the phasing-in of higher minimum capital requirements and conservation 

buffers.  

The term ‘Basel IV’ refers to the changes to these Basel Accords in 2016 and 2017 but is not 

recognized by regulators. These changes limit the potential reduction in capital required resulting 

from applying the IRB approach as compared to the STA. More specifically, a floor is set of 72.5% 

of the capital requirement that would be imposed under the STA (PwC, 2017).  

Appendix 3 

Consider the example in which one wants to regress ln (
𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒

1−𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒
) on Belgian HPI. Figures A.2 

and A.3 show that both time series are non-stationary. A simple linear regression model would lead 

to an 𝑅2 = 52.73%. The conclusion that HPI explains 52.73% of the variance in ln (
𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒

1−𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒
) is 

incorrect, as this high value for the 𝑅2 is largely explained by the common underlying driver, time.  

  

Figure A.2. Belgian 𝑙𝑛 (
𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒

1−𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒
) over time. Figure A.3. Belgian HPI over time. 

In order to decide how the analysis should be correctly executed, the procedure outlined in Figure 

A.4 can be followed.  



  

67 

 

Figure A.4. Procedure for modeling time series. (Adapted from: Croux, 2017)  

The procedure starts with the performance of an ADF test in order to test the 𝐻0 of non-stationarity 

(also referred to as ‘unit root’) or stochastic trend. In the case when the time series follows a clear 

trend, a trend term is included in the test equation. The null hypothesis (𝐻0) states that the deviations 

from this linear trend follow a random walk without drift and thus that the time series follows a 

stochastic trend. If the 𝐻0 is rejected, one should include a deterministic trend in the model and 

continue analysis on the residuals of this model. On the other hand, if the 𝐻0 is not rejected, the time 

series is concluded to be non-stationary and one should continue further analysis on the first 

differences. When the time series does not follow a clear trend, no trend term should be included in 

the test equation. The corresponding 𝐻0 assumes non-stationarity. If this hypothesis is rejected, one 

can continue the analysis with the original time series. Otherwise, one should again take first 

differences.  

Appendix 4 

Demey et al. (2004) explain how an asymptotic maximum likelihood estimator (MLE) approach can 

be adopted to approximate the binomial MLE, which is often used to estimate asset correlations. 

However, while the binomial MLE considered by Demey et al. (2004) maximizes the likelihood of 

the number of defaults in each category at a fixed point in time, the MLE required in this paper should 

maximize the likelihood of the number of defaults in a fixed credit rating category within a range of 

time periods. Hence, whereas Demey et al. (2004) sum the likelihoods conditional upon a category 

over the different categories, this study sums, for each credit rating category separately, the 

likelihoods conditional upon a time period over the different time periods. Demey et al. (2004) explain 

that in order to approximate the binomial shaped log-likelihood by an asymptotic MLE, it must hold 

that 𝑃𝐷𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑠 𝑖𝑛 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑎𝑛𝑖𝑒𝑠 𝑖𝑛 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦
 for every category. As this study assumes that the 
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asset correlations may differ for different credit ratings, it is required to maximize the asymptotic 

MLE separately for each credit rating. Hence the translation of the requirement of Demey et al. (2004) 

is the following: 

 𝑃𝐷𝑖,𝑡 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑟𝑎𝑡𝑖𝑛𝑔 𝑖 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑒𝑑 𝑎𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑟𝑎𝑡𝑖𝑛𝑔 𝑖 𝑎𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡
  

Additionally, as the correctness of the asymptotic MLE relies on the law of large numbers, it is 

required that the number of corporations in each rating grade is high at each point in time. As the 

latter requirement may not be met by all credit ratings (e.g. CCC-C), the different ratings are pooled 

into two larger categories, ‘investment grade’ (AAA - BBB) and ‘speculative grade’ (BB - C).  

 

The equivalence between the log-likelihood estimator with binomial shape applied by Grundke 

and Pliszka (2017) and Equation (10) needs to be proven. The formula used in Grundke and Pliszka 

(2017) is given below.  

𝑙𝑖 = ∑ln ∫ (
𝑁𝑖(𝑡)

𝑑𝑖(𝑡)
)

+∞

−∞

× 𝑞𝑖(𝑧, 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ(𝑡), 𝑃𝐶1(𝑡), 𝑃𝐶2(𝑡))
𝑑𝑖(𝑡)

×

𝑇

𝑡=1

  

(1 − 𝑞𝑖(𝑧, 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ(𝑡), 𝑃𝐶1(𝑡), 𝑃𝐶2(𝑡)))
𝑁𝑖(𝑡)−𝑑𝑖(𝑡)

× 𝜙(𝑧)𝑑𝑧 

The main part of the integrand, everything except 𝜙(𝑧), denotes the probability of finding 𝑑 = 𝑑𝑖(𝑡) 

in a Binomial distribution 𝑑~𝐵(𝑁𝑖, 𝑞𝑖).  

Now consider the case for large 𝑁𝑖, for which the Binomial distribution becomes approximately 

normal: 

𝑑~𝑁(𝑞𝑖𝑁𝑖, 𝑁𝑖𝑞𝑖(1 − 𝑞𝑖)) 

The probability of finding 𝑑 = 𝑑𝑖(𝑡) can then be approximated as: 

Φ(
𝑑𝑖(𝑡) + 1 − 𝑞𝑖𝑁𝑖
𝑁𝑖𝑞𝑖(1 − 𝑞𝑖)

) − Φ(
𝑑𝑖(𝑡) − 𝑞𝑖𝑁𝑖
𝑁𝑖𝑞𝑖(1 − 𝑞𝑖)

) 

However, since the relevant values of 𝑑 increase with 𝑁𝑖, it is better to define a new variable: 

𝜇 =
𝑑

𝑁𝑖
~𝑁(𝑞𝑖,

𝑞𝑖(1 − 𝑞𝑖)

𝑁𝑖
) 

The probability of finding 𝑑 = 𝑑𝑖(𝑡) is equal to the probability of finding 𝜇 = 𝜇𝑖(𝑡) =
𝑑𝑖(𝑡)

𝑁𝑖
, hence: 
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Φ(𝑁𝑖

𝜇𝑖(𝑡) +
1
𝑁𝑖
− 𝑞𝑖

𝑞𝑖(1 − 𝑞𝑖)
) − Φ(𝑁𝑖

𝜇𝑖(𝑡) − 𝑞𝑖
𝑞𝑖(1 − 𝑞𝑖)

) = Φ(𝑁𝑖
𝜇𝑖(𝑡) + 𝑑𝜇𝑖 − 𝑞𝑖
𝑞𝑖(1 − 𝑞𝑖)

) − Φ(𝑁𝑖
𝜇𝑖(𝑡) − 𝑞𝑖
𝑞𝑖(1 − 𝑞𝑖)

)

≈
𝑑

𝑑𝜇𝑖
(Φ(𝑁𝑖

𝜇𝑖(𝑡) − 𝑞𝑖
𝑞𝑖(1 − 𝑞𝑖)

))𝑑𝜇𝑖 

In the first step 
1

𝑁𝑖
 is rewritten as 𝑑𝜇𝑖 to denote that it becomes infinitesimally small for 𝑁𝑖 → ∞ and 

that it can be grouped with 𝜇𝑖(𝑡). In the second step the difference of the two cumulative distribution 

functions is approximated as the derivative multiplied with the interval. This is again valid because 

the interval is small for large 𝑁𝑖. Note that one cannot substitute this derivative by the marginal 

distribution function, ϕ(𝑁𝑖
𝜇𝑖(𝑡)−𝑞𝑖

𝑞𝑖(1−𝑞𝑖)
), because the derivative is to 𝜇𝑖, not to the whole of 𝑁𝑖

𝜇𝑖(𝑡)−𝑞𝑖

𝑞𝑖(1−𝑞𝑖)
.  

 

The starting formula can thus be rewritten as: 

𝑙𝑖 = ∑ln ∫
𝑑

𝑑𝜇𝑖
(Φ(𝑁𝑖

𝜇𝑖(𝑡) − 𝑞𝑖
𝑞𝑖(1 − 𝑞𝑖)

))𝑑𝜇𝑖

+∞

−∞

× 𝜙(𝑧)𝑑𝑧

𝑇

𝑡=1

  

Note that the integration is still over 𝑧, not over 𝜇𝑖. Moreover, 𝑑𝜇𝑖 is merely a constant factor equal 

to 
1

𝑁𝑖
. It can therefore be brought outside of the integral and even be neglected as it does not influence 

the remainder of the derivation. 

= ∑ ln∫
𝑑

𝑑𝜇𝑖
(Φ(𝑁𝑖

𝜇𝑖(𝑡)−𝑞𝑖

𝑞𝑖(1−𝑞𝑖)
))

+∞

−∞
× 𝜙(𝑧)𝑑𝑧𝑇

𝑡=1   

= ∑ ln
𝑑

𝑑𝜇𝑖
(∫ Φ (𝑁𝑖

𝜇𝑖(𝑡)−𝑞𝑖

𝑞𝑖(1−𝑞𝑖)
) × 𝜙(𝑧)𝑑𝑧

+∞

−∞
)𝑇

𝑡=1    

Note that, since 𝑁𝑖 is considered large, Φ(𝑁𝑖
𝜇𝑖(𝑡)−𝑞𝑖

𝑞𝑖(1−𝑞𝑖)
) approximates a step function: 

Φ(𝑁𝑖
𝜇𝑖(𝑡)−𝑞𝑖

𝑞𝑖(1−𝑞𝑖)
) ≈ {

1 𝑖𝑓 𝑞𝑖 ≤ 𝜇𝑖
0 𝑖𝑓 𝑞𝑖 ≥ 𝜇𝑖

  

The integral can therefore be rewritten as the integral of 1 × 𝜙(𝑧) over all 𝑧 for which 𝑞𝑖 ≤ 𝜇𝑖.  

The threshold value, 𝑧𝑡ℎ𝑟𝑒𝑠ℎ, is the value of 𝑧 for which 𝑞𝑖 = 𝜇𝑖. 

𝑞𝑖(𝑧𝑡ℎ𝑟𝑒𝑠ℎ, 𝐺𝐷𝑃, 𝑃𝐶1, 𝑃𝐶2) = Φ(
𝑅𝑖,8 −√𝜌𝑖,𝑍 𝑧𝑡ℎ𝑟𝑒𝑠ℎ − 𝜌𝑖,𝐺𝐷𝑃𝐺𝐷𝑃(𝑡) − ∑ 𝜌𝑖,𝑃𝐶𝑗𝑝𝑐𝑗(𝑡)

𝑝
𝑗=1

√1 − 𝜌𝑖,𝑍
) = 𝜇𝑖 

→
𝑅𝑖,8−√𝜌𝑖,𝑍 𝑧𝑡ℎ𝑟𝑒𝑠ℎ−𝜌𝑖,𝐺𝐷𝑃𝐺𝐷𝑃(𝑡)− ∑ 𝜌𝑖,𝑃𝐶𝑗𝑝𝑐𝑗

(𝑡)
𝑝
𝑗=1

√1−𝜌𝑖,𝑍
= Φ−1(𝜇𝑖)  
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→ 𝑧𝑡ℎ𝑟𝑒𝑠ℎ =
𝑅𝑖,8−𝜌𝑖,𝐺𝐷𝑃𝐺𝐷𝑃(𝑡)− ∑ 𝜌𝑖,𝑃𝐶𝑗𝑝𝑐𝑗

(𝑡)
𝑝
𝑗=1 −Φ−1(𝜇𝑖)√1−𝜌𝑖,𝑍

√𝜌𝑖,𝑍
  

Since 
𝑑𝑞𝑖

𝑑𝑧
< 0, this means that: {

𝑞𝑖 ≤ 𝜇𝑖 𝑖𝑓 𝑧 ≥  𝑧𝑡ℎ𝑟𝑒𝑠ℎ 
𝑞𝑖 ≥ 𝜇𝑖 𝑖𝑓 𝑧 ≤  𝑧𝑡ℎ𝑟𝑒𝑠ℎ 

. 

Hence: 

𝑙𝑖 = ∑ln
𝑑

𝑑𝜇𝑖
( ∫ 𝜙(𝑧)𝑑𝑧

+∞

𝑧𝑡ℎ𝑟𝑒𝑠ℎ 

)

𝑇

𝑡=1

 

= ∑ln
𝑑

𝑑𝜇𝑖
(1 − Φ(𝑧𝑡ℎ𝑟𝑒𝑠ℎ))

𝑇

𝑡=1

 

= ∑ln (−𝜙(𝑧𝑡ℎ𝑟𝑒𝑠ℎ)
𝑑𝑧𝑡ℎ𝑟𝑒𝑠ℎ
𝑑𝜇𝑖

) 

𝑇

𝑡=1

 

= ∑ln
√1 − 𝜌𝑖,𝑍

√𝜌𝑖,𝑍 
𝜙(𝑧𝑡ℎ𝑟𝑒𝑠ℎ)

𝑇

𝑡=1

𝑑Φ−1(𝜇𝑖)

𝑑𝜇𝑖
 

=∑ln
√1 − 𝜌𝑖,𝑍

√𝜌𝑖,𝑍 
 
𝜙(𝑧𝑡ℎ𝑟𝑒𝑠ℎ)

𝜙( Φ−1(𝜇𝑖))

𝑇

𝑡=1

 

∎ 

 

Appendix 5 

Table A.1. Correlation matrix of the macro-economic risk factors. 

 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ 𝑃𝐶1 𝑃𝐶2 Δ𝐻𝑃𝐼 Δ𝑈𝑁𝐸𝑀𝑃𝐿 

𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ 1 - 0.4112 -0.6051 0.3024 -0.0721 

𝑃𝐶1  1 7.2958*10-16 -0.1291 0.3979 

𝑃𝐶2   1 -0.1374 -0.0616 

Δ𝐻𝑃𝐼    1 0.0913 

Δ𝑈𝑁𝐸𝑀𝑃𝐿     1 
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Appendix 6 

The Gaussian copula is the best-known copula type and can be applied in a large number of contexts, 

since it allows for any marginal distributions, combined with any pairwise dependence correlation 

matrix. However, a drawback is that by considering only pairwise correlations between the different 

variables, the Gaussian copula may overlook part of the dependence structure.  

The t-copula can be considered as a representation of the dependence structure in a multivariate t-

distribution (Demarta and McNeil, 2004). This copula type is frequently applied, particularly in the 

context of modeling multivariate financial return data. Previous research (Breymann et al., 2003; 

Mashal and Zeevi, 2002) has demonstrated that the empirical fit of the t-copula often considerably 

exceeds that of the Gaussian copula. The latter can be explained by the better ability of the t-copula 

to capture dependency in extreme values of the marginal distributions, which is relevant in the context 

of (reverse) stress testing. More specifically, changing the degrees of freedom parameter allows to 

set the degree of tail dependency (Dorey and Joubert, 2005). 

Appendix 7 

The probability of a certain scenario’s occurrence (𝑧, 𝑔𝑑𝑝, 𝑝𝑐1, 𝑝𝑐2, ℎ𝑝𝑖, 𝑢𝑛𝑒𝑚𝑝𝑙) is computed by 

the following formula, which is an adjusted version of a formula in Grundke and Pliszka (2013) so 

that it can be applied to the variables considered in this paper:  

𝑃(zL < Z ≤ zH, gdpL < GDP ≤ gdpH, pc1,L < PC1 ≤ pc1,H, pc2,L < PC2 ≤ pc2,H,

hpiL < HPI ≤ hpiH , unemplL < UNEMPL ≤ unemplH) 

= ∫ ∫ ∫ ∫ ∫ ∫ f(z, gdp, pc1, pc2, hpi, unempl)dz dgdp dpc1dpc2dhpi dunempl

unemplH

unemplL

hpiH

hpiL

pc2,H

pc2,L

pc1,H

pc1,L

gdpH

gdpL

zH

zL

  

= (F1(zH) − F1(zL)) × 

(C (F2(gdpH), F3(pc1,H), F4(pc2,H), F5(hpiH), F6(unemplH))  −  C (F2(gdpH), F3(pc1,H), F4(pc2,H), F5(hpiH), F6(unemplL))  

− C (F2(gdpH), F3(pc1,H), F4(pc2,H), F5(hpiL), F6(unemplH)) +  C (F2(gdpH), F3(pc1,H), F4(pc2,H), F5(hpiL), F6(unemplL)) 

− C (F2(gdpH), F3(pc1,H), F4(pc2,L), F5(hpiH), F6(unemplH)) +  C (F2(gdpH), F3(pc1,H), F4(pc2,L), F5(hpiH), F6(unemplL)) 

+ C (F2(gdpH), F3(pc1,H), F4(pc2,L), F5(hpiL), F6(unemplH)) −  C (F2(gdpH), F3(pc1,H), F4(pc2,L), F5(hpiL), F6(unemplL)) 

− C (F2(gdpH), F3(pc1,L), F4(pc2,H), F5(hpiH), F6(unemplH)) +  C (F2(gdpH), F3(pc1,L), F4(pc2,H), F5(hpiH), F6(unemplL)) 

+ C (F2(gdpH), F3(pc1,L), F4(pc2,H), F5(hpiL), F6(unemplH)) −  C (F2(gdpH), F3(pc1,L), F4(pc2,H), F5(hpiL), F6(unemplL)) 



  

72 

+ C (F2(gdpH), F3(pc1,L), F4(pc2,L), F5(hpiH), F6(unemplH)) −  C (F2(gdpH), F3(pc1,L), F4(pc2,L), F5(hpiH), F6(unemplL)) 

+ C (F2(gdpH), F3(pc1,L), F4(pc2,L), F5(hpiL), F6(unemplL))  −  C (F2(gdpL), F3(pc1,H), F4(pc2,H), F5(hpiH), F6(unemplH)) 

+ C (F2(gdpL), F3(𝑝c1,H), F4(pc2,H), F5(hpiH), F6(unemplL)) +  C (F2(gdpL), F3(pc1,H), F4(pc2,H), F5(hpiL), F6(unemplH)) 

− C (F2(gdpL), F3(pc1,H), F4(pc2,H), F5(hpiL), F6(unemplL)) +  C (F2(gdpL), F3(pc1,H), F4(pc2,L), F5(hpiH), F6(unemplH)) 

− C (F2(gdpL), F3(pc1,H), F4(pc2,L), F5(hpiH), F6(unemplL)) −  C (F2(gdpL), F3(pc1,H), F4(pc2,L), F5(hpiL), F6(unemplH)) 

+ C (F2(gdpL), F3(pc1,H), F4(pc2,L), F5(hpiL), F6(unemplL))  +  C (F2(gdpL), F3(pc1,L), F4(pc2,H), F5(hpiH), F6(unemplH)) 

− C (F2(gdpL), F3(pc1,L), F4(pc2,H), F5(hpiH), F6(unemplL)) −  C (F2(gdpL), F3(pc1,L), F4(pc2,H), F5(hpiL), F6(unemplH)) 

+ C (F2(gdpL), F3(pc1,L), F4(pc2,H), F5(hpiL), F6(unemplL))  −  C (F2(gdpL), F3(pc1,L), F4(pc2,L), F5(hpiH), F6(unemplH)) 

+ C (F2(gdpL), F3(pc1,L), F4(pc2,L), F5(hpiH), F6(unemplL))  +  C(F2(gdpL), F3(pc1,L), F4(pc2,L), F5(hpiL), F6(unemplH)) 

− C(F2(gdpL), F3(pc1,L), F4(pc2,L), F5(hpiL), F6(unemplL)))               (A.1) 

 

In this formula,  

 𝑓(𝑧, 𝑔𝑑𝑝, 𝑝𝑐1, 𝑝𝑐2, ℎ𝑝𝑖, 𝑢𝑛𝑒𝑚𝑝𝑙) denotes the multivariate density function,  

 𝐹1(𝑧), 𝐹2(𝑔𝑑𝑝), 𝐹3(𝑝𝑐1), 𝐹4(𝑝𝑐2), 𝐹5(ℎ𝑝𝑖), 𝐹6(𝑢𝑛𝑒𝑚𝑝𝑙) are the marginal distribution 

functions of the macro-economic factors, 𝑍, 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, 𝑃𝐶1, 𝑃𝐶2,Δ𝐻𝑃𝐼 and ΔUNEMPL, 

evaluated at 𝑧, 𝑔𝑑𝑝, 𝑝𝑐1, 𝑝𝑐2, ℎ𝑝𝑖 and 𝑢𝑛𝑒𝑚𝑝𝑙 respectively. 

 𝐶(. ) denotes the applied copula function  

 (𝑧𝐻, 𝑔𝑑𝑝𝐻, 𝑐1,𝐻, 𝑐2,𝐻, ℎ𝑝𝑖𝐻, 𝑢𝑛𝑒𝑚𝑝𝑙𝐻) (𝑟𝑒𝑠𝑝. (𝑧𝐿 , 𝑔𝑑𝑝𝐿 , 𝑐1,𝐿, 𝑐2,𝐿 , ℎ𝑝𝑖𝐿 , 𝑢𝑛𝑒𝑚𝑝𝑙𝐿)) are the 

upper bounds of the scenario (𝑧, 𝑔𝑑𝑝, 𝑝𝑐1, 𝑝𝑐2, ℎ𝑝𝑖, 𝑢𝑛𝑒𝑚𝑝𝑙) of which the probability of 

occurrence is computed. These upper bounds are computed as follows: 

(
𝑧𝐻 𝑔𝑑𝑝𝐻 𝑐1,𝐻 𝑐2,𝐻 ℎ𝑝𝑖𝐻 𝑢𝑛𝑒𝑚𝑝𝑙𝐻

𝑧𝐿 𝑔𝑑𝑝𝐿 𝑐1,𝐿 𝑐2,𝐿 ℎ𝑝𝑖𝐿 𝑢𝑛𝑒𝑚𝑝𝑙𝐿
) =  (

𝑧 𝑔𝑑𝑝 𝑐1 𝑐2 ℎ𝑝𝑖 𝑢𝑛𝑒𝑚𝑝𝑙

𝑧 𝑔𝑑𝑝 𝑐1 𝑐2 ℎ𝑝𝑖 𝑢𝑛𝑒𝑚𝑝𝑙
) ± 

0.5 × 𝑓𝑎𝑐𝑡𝑜𝑟 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒. 

Note that realizations of 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ and Δ𝐻𝑃𝐼 and Δ𝑈𝑁𝐸𝑀𝑃𝐿 are denoted by 𝑔𝑑𝑝, ℎ𝑝𝑖, 𝑢𝑛𝑒𝑚𝑝𝑙 

for clarity. 

The proof of this formula is provided below. For clarity the variables 𝑧, 𝑔𝑑𝑝, 𝑝𝑐1, 𝑝𝑐2, ℎ𝑝𝑖, 𝑢𝑛𝑒𝑚𝑝𝑙 

are replaced by 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6.  
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∫ ∫ ∫ ∫ ∫ ∫ 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)𝑑𝑥1

𝑥6
𝐻

𝑥6
𝐿

𝑥5
𝐻

𝑥5
𝐿

𝑑𝑥2

𝑥4
𝐻

𝑥4
𝐿

𝑑𝑥3

𝑥3
𝐻

𝑥3
𝐿

𝑑𝑥4

𝑥2
𝐻

𝑥2
𝐿

𝑑𝑥5 𝑑𝑥6

𝑥1
𝐻

𝑥1
𝐿

 

𝑥1 𝑖𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠. 

= (𝐹1(𝑥1
𝐻) − 𝐹1(𝑥1

𝐿)) × ∫ ∫ ∫ ∫ ∫ 𝑓(𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)

𝑥6
𝐻

𝑥6
𝐿

𝑑𝑥2

𝑥5
𝐻

𝑥5
𝐿

𝑑𝑥3

𝑥4
𝐻

𝑥4
𝐿

𝑑𝑥4

𝑥3
𝐻

𝑥3
𝐿

𝑑𝑥5𝑑𝑥6

𝑥2
𝐻

𝑥2
𝐿

 

= (𝐹1(𝑥1
𝐻) − 𝐹1(𝑥1

𝐿))

× ∫ ∫ ∫ ∫ ∫ 𝑓2(𝑥2)𝑓3(𝑥3)𝑓4(𝑥4)𝑓5(𝑥5)𝑓6(𝑥6)𝑐(𝐹2(𝑥2), 𝐹3(𝑥3), 𝐹4(𝑥4), 𝐹5(𝑥5), 𝐹6(𝑥6))

𝑥6
𝐻

𝑥6
𝐿

𝑑𝑥2

𝑥5
𝐻

𝑥5
𝐿

𝑑𝑥3

𝑥4
𝐻

𝑥4
𝐿

𝑑𝑥4

𝑥3
𝐻

𝑥3
𝐿

𝑑𝑥5𝑑𝑥6

𝑥2
𝐻

𝑥2
𝐿

 

 

𝐴 =  (𝐹1(𝑥1
𝐻) − 𝐹1(𝑥1

𝐿))  

∫ 𝑓′(𝑥)𝑑𝑥 

𝑥𝐻

𝑥𝐿

= ∫ 𝑑𝑓(𝑥) 

𝑓(𝑥𝐻)

𝑓(𝑥𝐿)

 

 

= 𝐴 

× ∫ ∫ ∫ ∫ ∫ (
𝑑5

𝑑𝐹2(𝑥2) 𝑑𝐹3(𝑥3) 𝑑𝐹4(𝑥4) 𝑑𝐹5(𝑥5)𝑑𝐹6(𝑥6)
𝐶(𝐹2(𝑥2), 𝐹3(𝑥3), 𝐹4(𝑥4), 𝐹5(𝑥5), 𝐹6(𝑥6)))

𝐹6(𝑥6
𝐻)

𝐹6(𝑥6
𝐿)

𝐹5(𝑥5
𝐻)

𝐹5(𝑥5
𝐿)

𝐹4(𝑥4
𝐻)

𝐹4( 𝑥4
𝐿)

𝐹3(𝑥3
𝐻)

𝐹3(𝑥3
𝐿)

𝐹2(𝑥2
𝐻)

𝐹2(𝑥2
𝐿)

 

𝑑𝐹2(𝑥2) 𝑑𝐹3(𝑥3) 𝑑𝐹4(𝑥4) 𝑑𝐹5(𝑥5)𝑑𝐹6(𝑥6) 

 

= 𝐴 

× ∫ ∫ ∫ ∫ (
𝑑4

𝑑𝐹2(𝑥2) 𝑑𝐹3(𝑥3) 𝑑𝐹4(𝑥4) 𝑑𝐹5(𝑥5) 
𝐶(𝐹2(𝑥2), 𝐹3(𝑥3), 𝐹4(𝑥4), 𝐹5(𝑥5), 𝐹6(𝑥6

𝐻))

𝐹5(𝑥5
𝐻)

𝐹5(𝑥5
𝐿)

𝐹4(𝑥4
𝐻)

𝐹4(𝑥4
𝐿)

𝐹3(𝑥3
𝐻)

𝐹3(𝑥3
𝐿)

𝐹2(𝑥2
𝐻)

𝐹2(𝑥2
𝐿)

− 
𝑑4

𝑑𝐹2(𝑥2) 𝑑𝐹3(𝑥3) 𝑑𝐹4(𝑥4) 𝑑𝐹5(𝑥5) 
𝐶(𝐹2(𝑥2), 𝐹3(𝑥3), 𝐹4(𝑥4), 𝐹5(𝑥5), 𝐹6(𝑥6

𝐿))) 𝑑𝐹2(𝑥2) 𝑑𝐹3(𝑥3) 𝑑𝐹4(𝑥4) 𝑑𝐹5(𝑥5)  

 

= 𝐴 × ∫ ∫ ∫ (( 
𝑑3

𝑑𝐹2(𝑥2) 𝑑𝐹3(𝑥3) 𝑑𝐹4(𝑥4) 
𝐶 (𝐹2(𝑥2), 𝐹3(𝑥3), 𝐹4(𝑥4)𝐹5(𝑥5

𝐻)𝐹6(𝑥6
𝐻))

𝐹4(𝑥4
𝐻)

𝐹4(𝑥4
𝐿)

𝐹3(𝑥3
𝐻)

𝐹3(𝑥3
𝐿)

𝐹2(𝑥2
𝐻)

𝐹2(𝑥2
𝐿)

− 
𝑑3

𝑑𝐹2(𝑥2) 𝑑𝐹3(𝑥3)  𝑑𝐹4(𝑥4)
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3)𝐹4(𝑥4)𝐹5(𝑥5

𝐿)𝐹6(𝑥6
𝐻)))

+ ( −
𝑑3

𝑑𝐹2(𝑥2) 𝑑𝐹3(𝑥3)  𝑑𝐹4(𝑥4)
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3)𝐹4(𝑥4)𝐹5(𝑥5

𝐻)𝐹6(𝑥6
𝐿))

+
𝑑3

𝑑𝐹2(𝑥2) 𝑑𝐹3(𝑥3) 𝑑𝐹4(𝑥4) 
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3)𝐹4(𝑥4)𝐹5(𝑥5

𝐿)𝐹6(𝑥6
𝐿))) )𝑑𝐹2(𝑥2) 𝑑𝐹3(𝑥3) 𝑑𝐹4(𝑥4) 
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= 𝐴 × ∫ ∫ (
𝑑

𝑑𝐹2(𝑥2)𝑑𝐹3(𝑥3) 
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3)𝐹3(𝑥4

𝐻)𝐹5(𝑥5
𝐻)𝐹6(𝑥6

𝐻))

𝐹3(𝑥3
𝐻)

𝐹3(𝑥3
𝐿)

𝐹2(𝑥2
𝐻) 

𝐹2(𝑥2
𝐿)

−
𝑑

𝑑𝐹2(𝑥2)𝑑𝐹3(𝑥3) 
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3)𝐹4(𝑥4

𝐿)𝐹5(𝑥5
𝐻)𝐹6(𝑥6

𝐻))  

− 
𝑑

𝑑𝐹2(𝑥2)𝑑𝐹3(𝑥3) 
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3)𝐹4(𝑥4

𝐻)𝐹5(𝑥5
𝐿)𝐹6(𝑥6

𝐻))

+ 
𝑑

𝑑𝐹2(𝑥2)𝑑𝐹3(𝑥3)
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3)𝐹4(𝑥4

𝐿)𝐹5(𝑥5
𝐿)𝐹6(𝑥6

𝐻))  

−
𝑑

𝑑𝐹2(𝑥2)𝑑𝐹3(𝑥3) 
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3)𝐹4(𝑥4

𝐻)𝐹5(𝑥5
𝐻)𝐹6(𝑥6

𝐿))

+ 
𝑑

𝑑𝐹2(𝑥2) 𝑑𝐹3(𝑥3) 
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3)𝐹4(𝑥4

𝐿)𝐹5(𝑥5
𝐻)𝐹6(𝑥6

𝐿))  

+
𝑑

𝑑𝐹2(𝑥2)𝑑𝐹3(𝑥3) 
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3)𝐹4(𝑥4

𝐻)𝐹5(𝑥5
𝐿)𝐹6(𝑥6

𝐿))

− 
𝑑

𝑑𝐹2(𝑥2) 𝑑𝐹3(𝑥3) 
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3)𝐹4(𝑥4

𝐿)𝐹5(𝑥5
𝐿)𝐹6(𝑥6

𝐿)))𝑑𝐹2(𝑥2)𝑑𝐹3(𝑥3)  

= 𝐴 × ∫ (
𝑑

𝑑𝐹2(𝑥2) 
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3

𝐻)𝐹4(𝑥4
𝐻)𝐹5(𝑥5

𝐻)𝐹6(𝑥6
𝐻))  −

𝑑

𝑑𝐹2(𝑥2) 
 𝐶 (𝐹2(𝑥2)𝐹3(𝑥3

𝐿)𝐹4(𝑥4
𝐻)𝐹5(𝑥5

𝐻)𝐹6(𝑥6
𝐻))

𝐹2(𝑥2
𝐻)

𝐹2(𝑥2
𝐿)

−
𝑑

𝑑𝐹2(𝑥2) 
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3

𝐻)𝐹4(𝑥4
𝐿)𝐹5(𝑥5

𝐻)𝐹6(𝑥6
𝐻)) + 

𝑑

𝑑𝐹2(𝑥2) 
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3

𝐿)𝐹4(𝑥4
𝐿)𝐹5(𝑥5

𝐻)𝐹6(𝑥6
𝐻))  

−  
𝑑

𝑑𝐹2(𝑥2) 
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3

𝐻)𝐹4(𝑥4
𝐻)𝐹5(𝑥5

𝐿)𝐹6(𝑥6
𝐻)) + 

𝑑

𝑑𝐹2(𝑥2) 
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3

𝐿)𝐹4(𝑥4
𝐻)𝐹5(𝑥5

𝐿)𝐹6(𝑥6
𝐻))

+ 
𝑑

𝑑𝐹2(𝑥2) 
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3

𝐻)𝐹4(𝑥4
𝐿)𝐹5(𝑥5

𝐿)𝐹6(𝑥6
𝐻)) − 

𝑑

𝑑𝐹2(𝑥2) 
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3

𝐿)𝐹4(𝑥4
𝐿)𝐹5(𝑥5

𝐿)𝐹6(𝑥6
𝐻))  

−
𝑑

𝑑𝐹2(𝑥2) 
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3

𝐻)𝐹4(𝑥4
𝐻)𝐹5(𝑥5

𝐻)𝐹6(𝑥6
𝐿))  +  

𝑑

𝑑𝐹2(𝑥2) 
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3

𝐿)𝐹4(𝑥4
𝐻)𝐹5(𝑥5

𝐻)𝐹6(𝑥6
𝐿))

+ 
𝑑

𝑑𝐹2(𝑥2) 
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3

𝐻)𝐹4(𝑥4
𝐿)𝐹5(𝑥5

𝐻)𝐹6(𝑥6
𝐿)) − 

𝑑

𝑑𝐹2(𝑥2) 
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3

𝐿)𝐹4(𝑥4
𝐿)𝐹5(𝑥5

𝐻)𝐹6(𝑥6
𝐿))  

+
𝑑

𝑑𝐹2(𝑥2) 
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3

𝐻)𝐹4(𝑥4
𝐻)𝐹5(𝑥5

𝐿)𝐹6(𝑥6
𝐿))  −  

𝑑

𝑑𝐹2(𝑥2) 
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3

𝐿)𝐹4(𝑥4
𝐻)𝐹5(𝑥5

𝐿)𝐹6(𝑥6
𝐿))  

−  
𝑑

𝑑𝐹2(𝑥2) 
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3

𝐻)𝐹4(𝑥4
𝐿)𝐹5(𝑥5

𝐿)𝐹6(𝑥6
𝐿))

+
𝑑

𝑑𝐹2(𝑥2) 
𝐶 (𝐹2(𝑥2)𝐹3(𝑥3

𝐿)𝐹4(𝑥4
𝐿)𝐹5(𝑥5

𝐿)𝐹6(𝑥6
𝐿)))𝑑𝐹2(𝑥2)  

= ⋯ = 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (𝐴. 1).                          ∎ 

  



  

75 

Appendix 8 

The S&P report (2016) provides the following regional definition for ‘Europe’: “Austria, Belgium, 

British Virgin Islands, Bulgaria, Channel Islands, Croatia, Cyprus, Czech Republic, Denmark, 

Estonia, Finland, France, Germany, Gibraltar, Greece, Guernsey, Hungary, Iceland, Ireland, Isle of 

Man, Italy, Jersey, Latvia, Liechtenstein, Lithuania, Luxembourg, Malta, Monaco, Montenegro, 

Netherlands, Norway Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, 

and the U.K”. Some of these countries accommodate significantly more S&P rated companies than 

others. More specifically, from Figure A.5, which presents the distribution of European corporates 

rated by S&P across countries, it can be concluded that the vast majority of the rated companies are 

situated in Western European countries.  

 

* The rest category ‘Others’ contains the following countries: Switzerland, Italy, Belgium, Austria, Denmark, Finland, 

Norway, Jersey, Greece, Portugal, Czech Republic, Poland, Guernsey, Cyprus, Romania, Bulgaria, Croatia, Hungary, 

Malta, Slovenia, Estonia, Iceland, Lithuania, Slovakia. 

(Data retrieved from: https://www.standardandpoors.com/en_US/web/guest/entity-browse) 

Figure A.5. Distribution of European corporates rated by S&P across countries. 
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Appendix 9 

Table A.2. S&P’s average one-year European migration matrix over 1981-2016  

(Retrieved from: S&P, 2016). 

 AAA AA A BBB BB B CCC-C D 

AAA 0.87145 0.11760 0.00650 0.00220 0.00000 0.00000 0.00220 0.00000 

AA 0.00300 0.88270 0.10830 0.00600 0.00000 0.00000 0.00000 0.00000 

A 0.00010 0.02020 0.91310 0.06400 0.00200 0.00011 0.00000 0.00042 

BBB 0.00000 0.00108 0.04605 0.90490 0.04200 0.00400 0.00108 0.00086 

BB 0.00000 0.00000 0.00104 0.06030 0.84090 0.08827 0.00474 0.00474 

B 0.00000 0.00000 0.00047 0.00434 0.07807 0.83610 0.05130 0.02970 

CCC-C 0.00000 0.00000 0.00000 0.00000 0.00000 0.16757 0.50787 0.32456 

 

Table A.2 presents the average one-year migration probability of European corporations over 1981-

2016. This matrix is transformed into a matrix presenting the cumulative migration probabilities for 

each credit rating. 

Table A.3. Cumulative migration probability for individual credit ratings. 

 D CCC-C B BB BBB A AA AAA 

AAA 0 0.00220 0.00220 0.00220 0.00440 0.01090 0.12850 1 

AA 0 0 0 0 0.00600 0.11430 0.99700 1 

A 0.00042 0.00042 0.00053 0.00253 0.06653 0.97963 0.99983 1 

BBB 0.00086 0.00194 0.00594 0.04794 0.95284 0.99889 1 1 

BB 0.00474 0.00947 0.09775 0.93865 0.99895 1 1 1 

B 0.02970 0.08100 0.91710 0.99517 0.99951 1 1 1 

CCC/C 0.32456 0.83243 1 1 1 1 1 1 

 



  

77 

In order to construct the investment pool and speculative pool of obligors, the contribution of each 

credit rating within the larger pools is a necessary input. The distribution of companies in each of the 

two credit rating pools are provided in Table A.4.  

 Table A.4. Fraction of each credit rating in the two pools (Adapted from: S&P, 2014b). 

 Investment grade Speculative grade 

Credit rating AAA AA A BBB BB B CCC-C 

Percentage 0.038411 0.166887 0.353642 0.441060 0.313492 0.635913 0.050595 

 

Given the cumulative migration matrix of the individual ratings (Table A.3) and the composition of 

the two pools (Table A.4), the cumulative migration matrix of the pools can be computed by weighing 

the numbers of Table A.3 by the numbers of Table A.4. The result is presented in Table A.5. 

Table A.5. Cumulative migration probability of the two pools. 

 D CCC-C B BB BBB A AA AAA 

Investment 0.00053 0.00109 0.00289 0.02212 0.44496 0.80650 0.96595 1 

Speculative 0.03679 0.09660 0.66443 0.97769 0.99936 1 1 1 
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Appendix 10 

  

  

  

The plots above are helpful to decide whether or not the ADF test equation should include a trend 

term. Only for ln
𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒𝑠

1−𝑃𝐷𝑚𝑜𝑟𝑡𝑔𝑎𝑔𝑒𝑠
  and 𝐻𝑃𝐼 a trend term is included. 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ looks stationary. 

First differences are computed to obtain stationarity for the time series 𝐻𝑃𝐼 and 𝑈𝑁𝐸𝑀𝑃𝐿. 

Figure A.6. (Stationary transformations of) variables included in the dynamic lag model. 
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Table A.6. ADF tests macro-economic risk factors. 

 ADF test stat. p-value 

ln (
𝑃𝐷

1 − 𝑃𝐷
) -6.2435 5.974*10-5 

𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ -2.9657 0.04876 

𝑃𝐶1 -4.6136 0.0007972 

𝑃𝐶2 -3.8085 0.006661 

𝐻𝑃𝐼 -2.5441 0.3065 

𝑈𝑁𝐸𝑀𝑃𝐿 -2.2887 0.1812 

Δ𝐻𝑃𝐼 -3.1695 0.03106 

Δ𝑈𝑁𝐸𝑀𝑃𝐿 -9.3838 1.285*10-8 
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Appendix 11 

Table A.7. Best dynamic lags model according to BIC/AIC/𝑅2/𝑅𝑎𝑑𝑗
2 . 

 Model 

id. 

Number of lags of each regressor BIC AIC 𝑅2 𝑅𝑎𝑑𝑗
2  

𝜖 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ Δ𝐻𝑃𝐼 Δ𝑈𝑁𝐸𝑀𝑃𝐿 

B
es

t 
m

o
d
el

s 
ac

co
rd

in
g
 t

o
 

B
IC

 

2 / / / t-2 -64.68 -73.12 0.3292 0.2700 

7 / / t t-2 -64.31 -74.45 0.3854 0.3109 

13 / / t-1 t-2 -63.12 -74.94 0.4245 0.3346 

36 / t / t-2 -62.77 -72.90 0.3599 0.2823 

5 t / t t -62.76 -69.51 0.2258 0.1839 

B
es

t 
m

o
d
el

s 
ac

co
rd

in
g
 t

o
 

A
IC

 

58 / t t-3 t -61.84 -75.35 0.5052 0.4062 

13 / / t-1 t-2 -63.12 -74.94 0.4245 0.3346 

7 / / t t-2 -64.31 -74.45 0.3854 0.3109 

48 / t t-1 t-2 -60.72 -74.23 0.4437 0.3361 

59 / t t-3 t-1 -58.75 -73.95 0.5132 0.3957 

B
es

t 
m

o
d
el

s 
ac

co
rd

in
g
 t

o
 

𝑅
2
 

1039 t-4 t-3 t-4 t-4 -20.44 -54.21 0.5841 0.1437 

1074 t-4 t-4 t-4 t-3 -20.43 -54.21 0.5840 0.1436 

1038 t-4 t-3 t-4 t-3 -24.12 -56.21 0.5840 0.1911 

859 t-3 t-4 t-4 t-4 -20.42 -54.20 0.5839 0.1434 

823 t-3 t-3 t-4 t-4 -24.10 -56.19 0.5838 0.1907 

B
es

t 
m

o
d
el

s 
ac

co
rd

in
g
 t

o
 

𝑅
𝑎
𝑑
𝑗

2
 

64 / t t-4 t -56.64 -71.84 0.5303 0.4129 

65 / t t-4 t-1 -53.95 -70.84 0.5432 0.4078 

58 / t t-3 t -61.84 -75.35 0.5052 0.4062 

61 / t t-3 t-3 -54.09 -72.66 0.5476 0.3968 

59 / t t-3 t-1 -58.75 -73.95 0.5132 0.3957 
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Appendix 12 

Table A.8 provides the results of the Augmented Dickey-Fuller tests for the risk-free interest rates, the percentage changes in the interest rates 

(computed by Equation (20)) and the regular changes in the interest rates (computed by Equation (21)) over a ranging maturity.  

Table A.8. ADF tests on 𝑟𝑚(𝑡),%𝛥𝑟𝑚(𝑡) and 𝛥𝑟𝑚(𝑡). 

Maturity 3M 6M 1YR 2YR 3YR 4YR 5YR 6YR 7YR 8YR 9YR 10YR 15YR 30YR 

Augmented Dickey-Fuller test for interest rates, 𝑟(𝑡). 

ADF test stat. -6.7562 -6.5664 -8.3052 -6.0681 -5.2447 -4.9478 -2.7455 -2.9868 -2.4495 -2.3344 -2.3275 -2.3567 -2.5993 -2.7207 

p-value <0.0001 <0.0001 <0.0001 <0.0001 0.0008 0.0017 0.2261 0.1504 0.3494 0.4053 0.4088 0.3942 0.2829 0.2351 

Augmented Dickey-Fuller test for percentage changes in interest rates, %Δ𝑟(𝑡). 

ADF test stat. -5.1179 -5.8036 -4.8609 -5.0029 -5.1518 -4.0007 -5.8081 -6.6509 -2.6949 -4.8889 -0.9032 -3.3626 -6.2283 -6.8519 

p-value 0.0002 <0.0001 0.0004 0.0003 0.0002 0.0041 <0.0001 <0.0001 0.08562 0.0004 0.7746 0.0199 <0.0001 <0.0001 

Augmented Dickey-Fuller test for regular changes in interest rates, Δ𝑟(𝑡). 

ADF test stat. -4.2709 -4.4718 -4.2796 -4.4813 -4.576 -4.3709 -4.9641 -4.6249 -5.3203 -4.9941 -5.0749 -5.3437 -5.8436 -6.4876 

p-value 0.0020 

 

0.0012 0.0020 0.0011 0.0009 0.0015 0.0003 0.0008 0.0001 0.0003 0.0002 0.0001 <0.0001 <0.0001 

 



  

82 

   

Figure A.7. Interest rates of Belgian 

benchmark bonds with different maturities. 

Figure A.8. Percentage changes in interest 

rates of Belgian benchmark bonds with 

different maturities. 

Figure A.9. First difference in interest rates 

of Belgian benchmark bonds with different 

maturities. 
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Appendix 13 

Table A.9. Parameters t-copula (df=4) for 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, 𝑃𝐶1, 𝑃𝐶2. 

 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ 𝑃𝐶1 𝑃𝐶2 

𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ 1 - 0.35442 - 0.08506 

𝑃𝐶1  1 - 0.42399 

𝑃𝐶2   1 

 

Table A.10. Parameters t-copula (df=5) for all factors. 

 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ 𝑃𝐶1 𝑃𝐶2 Δ𝐻𝑃𝐼 Δ𝑈𝑁𝐸𝑀𝑃𝐿 

𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ 1 - 0.34144 - 0.05091 0.20730 - 0.11779 

𝑃𝐶1  1 - 0.45367 -0.02701 0.55659 

𝑃𝐶2   1 - 0.01021 - 0.23173 

Δ𝐻𝑃𝐼    1 0.15266 

Δ𝑈𝑁𝐸𝑀𝑃𝐿     1 

 

Appendix 14 

Table A.11. Number of RSTSs determined.  

 Investment grade Speculative grade 

Normal Normal & GPD Normal Normal & GPD 

Number of 

RSTSs 
14512 8192 75224 91448 
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Appendix 15 

Table A.12. Most different RSTSs for the four settings. 

Initial 

rating 

Marg. 

distr. 
𝑍 

𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ 

(%) 

𝑃𝐶1  

(%) 

𝑃𝐶2  

(%) 

Δ𝐻𝑃𝐼  

(%) 

Δ𝑈𝑁𝐸𝑀𝑃𝐿  

(%) 

S
p
ec

u
la

ti
v
e 

g
ra

d
e 

Normal 

0.5  -0.0332  -4.8614  0.7439 -0.0275 -0.3052 

0.5  0.5441 -4.8614  -0.7439  -0.0275 -0.3052  

-0.5  0.5441 -4.8614  -0.7439  1.1400  -0.3052  

GPD 

0.5  -0.0332  -4.8614  -0.7439  -0.0275 -0.3052 

-0.5  -0.0332  -4.8614  -0.7439  -1.1949  -0.8807 

-0.5  -0.6105 -4.8614  0.7439 -0.0275 -0.8807 

In
v
es

tm
en

t 
g
ra

d
e 

Normal 

-0.5  0.5441 11.3433  -5.2072  4.6422  0.2702  

-0.5  -1.1877  11.3433  -5.2072  3.4748  1.4212 

0.5  -0.0332  11.3433  -5.2072  -1.1945  1.4212 

GPD 

0.5  -1.1877  11.3433  -5.2072  3.4748  0.8457  

-0.5  -0.6105 8.1024  -5.2072  4.6422  1.9967  

0.5  -0.0332  11.3433  -5.2072  -0.0275  1.9967  
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